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Generating sets

If Σ is a finite set of symbols, then we let Σ∗ denote the set of all finite words

of symbols from Σ (including the empty word ǫ). If we only want to consider

non-empty words, then we denote the resulting set by Σ+.

Σ+ is the free semigroup on Σ and Σ∗ is the free monoid on Σ.

If we have a group G (or a monoid M) with a finite set of generators Σ, then

we have a natural homomorphism ϕ : Σ∗
→ G (or ϕ : Σ∗

→ M).

For a semigroup S generated by a finite set Σ we have a natural

homomorphism ϕ : Σ+
→ S.
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Word problems

The word problem in such a structure is the following question:

Input: Two words α and β in Σ∗ (or Σ+ in the case of a

semigroup);

Output: Yes if α and β represent the same element of the

group (monoid, semigroup);

No otherwise.

In a group, given a word β representing an element g, let γ be a word

representing g−1. Now α and β represent the same element of the group if

and only if αγ represents the identity.
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Word problems

Given this, we can define the word problem W = W(G) of a group G to be

the set of all words in Σ∗ that represent the identity element of G.

(This is not appropriate for monoids and does not make sense in

semigroups.)

In this way, we can think of the word problem of a group as being a formal

language.

We will focus on some relatively simple classes of languages, the regular

languages, the linear languages and the context-free languages. Saying that

the word problem of a group G is regular (or linear or context-free) does not

depend on the choice of finite generating set for G.
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Regular grammars

We have a finite set N of non-terminals that can be rewritten.

We have a finite set Σ of terminals that cannot be rewritten.

We have a finite set P of production rules.

Each production rule is of the form A → xB, where A,B ∈ N and x ∈ Σ, or

else of the form A → ǫ.

There is a designated starting symbol S ∈ N. The language generated by

the grammar is the set of all words in Σ∗ that can be derived from S.

A language is said to be regular if there is a regular grammar generating it.
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Example

G = (N,Σ,P,S).

N = {S,T }; Σ = {a,b,c}.

P is the set of productions:

S → aS | bT, T → cT | ǫ.

This regular grammar G generates the language

{anbcm : n,m ∈ N}.
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Other grammars

We have various generalizations of the notion of a regular grammar:

linear grammar: allows rules of the form A → xB and A → Bx

(with A,B ∈ N and x ∈ Σ) as well as A → ǫ;

one can also allow rules of the form A → x

with A ∈ N and x ∈ Σ (as this is equivalent to

A → xB and B → ǫ for some new B ∈ N);

context-free grammar: allows any rule of the form A → α with A ∈ N

and α ∈ (N∪Σ)∗ .

These types of grammar generate the classes of linear languages and

context-free languages respectively.
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Examples

G1 = (N1,Σ1,P1,S).

N1 = {S,T }.

Σ1 = {a,b,c}.

P1 is the set of productions:

S → aT | b, T → Sc.

The linear grammar G1 generates

the language

{anbcn : n ∈ N}.

G2 = (N2,Σ2,P2,X).

N = {X}; Σ2 = {a,a,b,b}.

P2 is the set of productions:

X → aXa | aXa | bXb | bXb | XX | ǫ.

The context-free grammar G2

generates the word problem of the

free group of rank 2 on {a,b}

(where a represents a−1 and b

represents b−1).
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Automata

We can also define these classes of languages using various notions of

“automata”.

Regular languages are accepted by finite automata.

A word is accepted if we reach an “accept state” after reading the word.

The language L(M) of M is the set of all words accepted by M. The above

automaton accepts {anbcm : n,m ∈N}.
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Pushdown automata

Context-free languages are accepted by pushdown automata where we add

a “stack” to the machine.

restrict to “one turn”: linear languages

restrict to one stack symbol (apart from

a fixed bottom marker #):

one-counter languages
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Determinism

An automaton is said to be deterministic if there can never be a possibility of

choice as regards to which move to make. For example, the finite automaton

shown below is not deterministic.

In a nondeterministic machine, a word is said to be accepted if it is possible

to reach an accepting configuration. The automaton shown above accepts

{abna : n ∈ N}∪ {ab}.

12



Word problems of groups

If G is a finitely-generated group, then W(G) is regular if and only if G is

finite. (Anisimov)

If G is a finitely-generated group, then W(G) is context-free if and only if

G has a free subgroup of finite index. (Muller & Schupp)

As a consequence, if W(G) is context-free, then it is deterministic

context-free.

If G is a finitely-generated group, then W(G) is a one-counter language if

and only if G has a cyclic subgroup of finite index. (Herbst)

(A group with a linear word problem is finite.)
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Decidability

There is no algorithm that, given a context-free language L, will decide

whether or not L is the word problem of a group. (Lakin & Thomas)

This can be generalized to the fact that there is no algorithm that, given a

one-counter language L, will decide whether or not L is the word problem of

a group. (Jones & Thomas)

However, there is an algorithm that, given a deterministic context-free

language L, will decide whether or not L is the word problem of a group.

(Jones & Thomas)
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Word problems of semigroups

Duncan and Gilman proposed the following definition of the word problem for

a semigroup S generated by a finite set A:

W(S) = {α#βrev : α,β ∈ A+, α =S β}.

This is a natural generalization of the word problem of a group G which was

W(G) = {αβ−1 : α,β ∈ A∗, α =G β}.

In this way, we can consider the word problem of a semigroup as a formal

language.

If S is a finitely-generated semigroup, then W(S) is regular if and only if S is

finite. (Duncan & Gilman)
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Automaticity - idea

We have a finite generating set A for a group G and a regular subset L

of A∗ that maps onto G. We want to perform/check the multiplication of

elements by generators via finite automata.

We will have one such automaton Ma for each element of A∪ {ǫ}.

16



Automaticity

Our automata need to read two symbols at once (if we are considering the

synchronous case).

If one string is shorter than the other, then we will need to “pad” the shorter

string with some extra symbols ($ say) to make the strings the same length.

This gives rise to the notion of an automatic structure (A,L) for G.
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Asynchronous automaticity

In the asynchronous case, we can read from the two tapes at different

speeds:

This gives rise to the notion of an asynchronous automatic structure (A,L)

for a group G.
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Automatic semigroups

All of this (including the uniqueness) generalizes naturally to semigroups and

monoids.

A semigroup S is automatic if and only if S1 is automatic. (Campbell,

Robertson, Ruškuc & Thomas)

In semigroups (unlike groups) one has to be careful about which side you

put the paddings and which side you take the multiplication by generators.
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Hyperbolicity

There are many definitions of a hyperbolic group; an elegant approach (due

to Gilman) generalizes naturally to monoids (and semigroups).

We have a monoid M generated by a finite set A. We then have a regular

language L ⊆ A∗ mapping onto the monoid M; the multiplication of

elements of L is then checked by a pushdown automaton.

To be more precise, we insist that the language

{α#β#γrev : α,β,γ ∈ L,αβ =M γ}

is context-free. (Duncan & Gilman)

This is equivalent to the normal definitions of hyperbolic if we restrict

ourselves to groups.
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Rational monoids and semigroups

This notion is due to Sakarovitch.

We have a monoid M (or semigroup S) generated by a finite set A. We then

have a regular language L ⊆ A∗ mapping bijectively onto M and a

transducer such that

A group is rational if and only if it is finite. (Sakarovitch)
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(Hoffmann, Kuske, Otto & Thomas)
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Linear and one-counter word problems

A semigroup has a linear word problem if and only if it is rational.

(Hoffmann, Holt, Owens & Thomas)

If a finitely generated semigroup S has word problem a one-counter

language, then S has a linear growth function. (Holt, Owens & Thomas)

If S is a finitely generated semigroup with linear growth then there exist

finitely many elements ai, bi, ci ∈ S∪ {ǫ} such that every element of S is

represented by a word of the form aib
n

i
ci for some i and some n> 0.

(Holt, Owens & Thomas)
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Context-free word problems

Some partial results: (Hoffmann, Holt, Owens & Thomas)

• there exists a semigroup with a word problem that is context-free but not

deterministic context-free;

• if S is a finitely generated semigroup and T has finite Rees index in S,

then S has context-free word problem if and only if T has context-free

word problem;

• if S and T have context-free word problems, then the free product S∗T

has context-free word problem;

• if S has a context-free word problem then S is hyperbolic (but need not

be automatic).
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Thank you!
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