

Cayley Automaton Semigroups

Alex McLeman

alexm@mcs.st-andrews.ac.uk

University of
St Andrews

NBSAN York - 21st November 2012

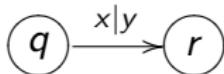
Definition

An *automaton* is a triple $\mathcal{A} = (Q, B, \delta)$ where:

- Q is a finite set of *states*
- B is a finite *alphabet*
- $\delta : Q \times B \rightarrow Q \times B$ is the *transition function*.

Definitions cont.

Automata have outputs:



If we are in state q and read symbol x , we move to state r and output y . That is, $\delta(q, x) = (r, y)$.

If we're in state q_0 and read a sequence $\alpha_1\alpha_2\dots\alpha_n$ we output $\beta_1\beta_2\dots\beta_n$ where $\delta(q_{i-1}, \alpha_i) = (q_i, \beta_i)$.

Starting in state q and reading α gives an endomorphism of the $|B|$ -ary rooted tree. Extending this to several states gives a homomorphism $\phi : Q^+ \rightarrow \text{End}(B^*)$.

We say that $\Sigma(\mathcal{A}) \cong \text{im}(\phi)$ is the *automaton semigroup*.

Cayley Automaton Semigroups

$\mathcal{C}(S)$ is the automaton arising from the right Cayley graph of S (where we take all of S as the generating set). A typical edge looks like

More formally:

$$\mathcal{C}(S) = (\overline{S}, S, \delta), \delta(\overline{s}, t) = (\overline{st}, st)$$

where we denote states by \overline{s} to avoid confusion.

$\Sigma(\mathcal{C}(S))$ is the *Cayley Automaton Semigroup*.

How does \bar{q} act on S^* ?

Let $x \in S, \alpha \in S^*, \bar{q}_i \in \bar{S}$. Then

$$\bar{q} \cdot (x\alpha) = (qx)(\bar{q}x \cdot \alpha), (\bar{q}_1 \cdot \bar{q}_2) \cdot \alpha = \bar{q}_1 \cdot (\bar{q}_2 \cdot \alpha).$$

For $\alpha = \alpha_1\alpha_2 \dots \alpha_n$ we have

$$\begin{aligned}\bar{q} \cdot \alpha &= (q\alpha_1)(\bar{q}\alpha_1 \cdot \alpha_2 \dots \alpha_n) \\ &= (q\alpha_1)(q\alpha_1\alpha_2)(\bar{q}\alpha_1\alpha_2 \cdot \alpha_3 \dots \alpha_n) \\ &\vdots \\ &= (q\alpha_1)(q\alpha_1\alpha_2) \dots (q\alpha_1 \dots \alpha_n)\end{aligned}$$

So we can think of \bar{q} as a function

$$\bar{q} : \alpha_1\alpha_2 \dots \alpha_n \mapsto (q\alpha_1)(q\alpha_1\alpha_2) \dots (q\alpha_1 \dots \alpha_n).$$

Some properties

- (Mintz 2009) Let S be finite. The following are equivalent:
 - S is aperiodic
 - $\Sigma(\mathcal{C}(S))$ is finite
 - $\Sigma(\mathcal{C}(S))$ is aperiodic
- (Silva and Steinberg 2005) Let G be a non-trivial finite group. Then $\Sigma(\mathcal{C}(G)) \cong F_{|G|}$
- (Mintz 2009) Let $T \leq S$. Then $\Sigma(\mathcal{C}(T))$ divides $\Sigma(\mathcal{C}(S))$. If T is a non-trivial group then $\Sigma(\mathcal{C}(T)) \leq \Sigma(\mathcal{C}(S))$.

Zeros

Let $z \in S$ be a left-zero. The \bar{z} is a left-zero in $\Sigma(\mathcal{C}(S))$.

$\bar{z} \cdot \alpha = (z\alpha_1)(z\alpha_1\alpha_2) \dots (z\alpha_1 \dots \alpha_n) = (z)^n$. Let $a \in S$. Then $\bar{a} \cdot \alpha = \beta_1\beta_2 \dots \beta_n$. So $\bar{z} \cdot \bar{a} \cdot \alpha = \bar{z} \cdot \beta_1\beta_2 \dots \beta_n = (z)^n$.

Consequently, $\Sigma(\mathcal{C}(L_n)) \cong L_n$ after noting

$$\bar{y} \cdot \alpha = (y)^n \neq (z)^n = \bar{z} \cdot \alpha.$$

Let $0 \in S$ be the zero element. Then $\bar{0}$ is the zero element in $\Sigma(\mathcal{C}(S))$.

Let $z \in S$ be a right zero. Then \bar{z} is a right-zero in $\Sigma(\mathcal{C}(S))$.

Consider R_n . Then

$$\bar{x} \cdot \alpha = (x\alpha_1)(x\alpha_1\alpha_2) \dots (x\alpha_1 \dots \alpha_n) = \alpha_1\alpha_2 \dots \alpha_n \text{ and}$$

$$\bar{y} \cdot \alpha = \alpha_1\alpha_2 \dots \alpha_n. \text{ So } \bar{x} = \bar{y} \text{ but } x \neq y.$$

When does $\bar{x} = \bar{y}$?

Lemma

Let $x \neq y \in S$. Then $\bar{x} = \bar{y} \in \Sigma(\mathcal{C}(S))$ if and only if $xa = ya$ for all $a \in S$.

Proof.

(\Rightarrow) Let $a\alpha \in S^*$. Then $\bar{x} \cdot a\alpha = (xa)(\bar{x}\alpha)$ and $\bar{y} \cdot a\alpha = (ya)(\bar{y}\alpha)$. The first symbols of the outputs must be equal and so $xa = ya$ for all $a \in S$.

(\Leftarrow) Let $xa = ya$. Then

$\bar{x} \cdot a\alpha = (xa)(\bar{x}\alpha) = (ya)(\bar{y}\alpha) = \bar{y} \cdot a\alpha$ and so $\bar{x} = \bar{y}$. □

Nilpotent Semigroups

A semigroup S is *nilpotent of class n* if there exists n such that $S^n = \{0\}$ and $S^{n-1} \neq \{0\}$. Note that such a semigroup must necessarily contain a zero element. By definition a semigroup is nilpotent of class 1 if and only if it is trivial.

Lemma (Cain 2009)

Let S be finite and nilpotent of class n . Then $\Sigma(C(S))$ is finite and nilpotent of class $n - 1$.

Proof.

We have $\overline{w_1} \cdot \overline{w_2} \cdot \dots \cdot \overline{w_{n-1}} \cdot \alpha = (w_1 w_2 \dots w_{n-1} \alpha) \dots = 0^\omega$ since S is nilpotent of class n . Hence $\Sigma(C(S))$ is nilpotent of class at most $n - 1$.

Now let w_1, \dots, w_{n-1} be such that $w_1 w_2 \dots w_{n-1} \neq 0$. Then $\overline{w_1} \cdot \dots \cdot \overline{w_{n-2}} \cdot w_{n-1} = (w_1 w_2 \dots w_{n-2} w_{n-1}) \neq 0^\omega$. Hence $\overline{w_1} \cdot \dots \cdot \overline{w_{n-2}} \neq \overline{0}$. So $\Sigma(C(S))$ is nilpotent of class $n - 1$. □

Other known classes of Semigroups

Lemma (M 2012)

Let S be cancellative (and not necessarily finite). Then $\Sigma(C(S))$ is free of rank equal to the order of S .

Lemma (M 2011)

Let S be a finite monogenic semigroup with a non-trivial subgroup. Then $\Sigma(C(S))$ is a small extension of a free semigroup of rank equal to the order of the subgroup.

Lemma (Maltcev 2008)

Let S be finite. Then $\Sigma(C(S))$ is free if and only if the minimal ideal K of S consists of a single \mathcal{R} -class in which every \mathcal{H} -class is non-trivial and there exists k such that $st = skt$ for all $s, t \in S$.

Self-Automaton Semigroups

S is *self-automaton* if $S \cong \Sigma(C(S))$. We are particularly interested in the map $s \mapsto \bar{s}$. Known examples:

- A monoid is self automaton if and only if it is a band
- Left-zero semigroups
- Semilattices
- Zero-unions of left-zero semigroups
- $L_n \cup B$ where L_n acts trivially on the band B

Theorem

Let B be a band. Then the map $b \mapsto \bar{b}$ is a homomorphism.

We can classify which bands are self-automaton.

Theorem (M 2012)

Let B be a band. Then $B \cong \Sigma(C(B))$ under the map $b \mapsto \bar{b}$ if and only if the left-regular representation of B is faithful.

Self-Automaton Semigroups cont

So are all self-automaton semigroups bands? NO!

$S = \langle e, f, a, 0 \mid e^2 = ef = e, f^2 = fe = f, ae = af = a, ea = fa = a^2 = 0 \rangle$ is self-automaton.

It remains an open question to classify the self-automaton semigroups.

Thanks for listening!