

Coherent monoids

NBSAN, St Andrews

April 9th, 2013

Victoria Gould
University of York

Introduction

- **Coherency** is a finitary property for monoids;
- it arises from **model theoretic** considerations of S -acts;
- it seems to be **awkward** to investigate in a consistent way.

Finitary properties

A **finitary property** is a property defined for monoids that is satisfied by all finite monoids.

Examples

- ① **Chain** conditions on (one-sided) ideals: e.g. the d.c.c. on principal right ideals M_R - if

$$a_1S \supseteq a_2S \supseteq \dots$$

then the chain stabilises with

$$a_nS = a_{n+1}S = \dots;$$

- ② **Finitely generated** - $S = \langle a_1, \dots, a_k \rangle$;
- ③ **Automatic** - S described using regular languages (finite state automata) for the set and multiplication;
- ④ conditions arising from '**Homological classification**' of monoids - guaranteeing that certain classes of S -acts coincide e.g. **perfection** for monoids;
- ⑤ conditions arising from **model theoretic** considerations of monoids and S -acts (such as **coherency**).

Outline

- ① A brief introduction to S -acts.
- ② What is coherency?
- ③ Which monoids are coherent?
- ④ Closure properties of the class of coherent monoids.
- ⑤ Further questions/unfinished theorems.

1. A brief introduction to S -acts: S -acts

Throughout, S is a **monoid**.

A **(right) S -act** is a set A together with a map

$$A \times S \rightarrow A, (a, s) \mapsto as$$

such that for all $a \in A, s, t \in S$

$$a1 = a \text{ and } (as)t = a(st).$$

Note any right ideal of S is an S -act - in particular, S is an S -act.

Beware: an S -act is also called an:

S -action, S -system, S -set, S -operand or (S) -polygon

The category **Act-S**

A and B are S -acts, a map $\alpha : A \rightarrow B$ is an **S -morphism** if

$$(as)\alpha = (a\alpha)s$$

for all $a \in A, s \in S$.

S -acts, together with S -morphisms, form a category **Act-S**

Act-S is a well-behaved category: epis are onto, monos are one-one, products are Cartesian products, coproducts are disjoint union

Note: If U, V are S -subacts of A , then so are $U \cap V$ and $U \cup V$.

Finitely generated S -acts

A is **monogenic** if $A = aS = \{as : s \in S\}$ for some $a \in A$.

An S -act A is **finitely generated** if

$$A = a_1S \cup a_2S \cup \dots \cup a_nS$$

for some $a_1, \dots, a_n \in A$.

A **congruence** on A is an equivalence that is compatible with the action of S .

If $H \subseteq A \times A$, then $\langle H \rangle$, the **congruence generated by H** is given by $a \langle H \rangle b$ iff $a = b$ or \exists an H -sequence

$$a = c_1t_1, d_1t_1 = c_2t_2, \dots, d_nt_n = b,$$

where $(c_i, d_i) \in H \cup H^{-1}$, $t_i \in S$.

Monogenic S -acts are of the form S/ρ where ρ is a right congruence on S .

Finitely presented S -acts

The **free** S -act on a set X is

$$F_X^S = \bigcup_{x \in X} \{xs : x \in X, s \in S\}$$

where $xs = yt$ iff $x = y, s = t$. The action is given by

$$(xs)t = x(st),$$

for $x \in X, s, t \in S$. So

$$F_X^S = \bigcup_{x \in X} xS.$$

Note that S is the free monogenic S -act.

A is **finitely presented** if $A \cong F_X^S / \rho$, where X is a finite set and ρ is finitely generated (i.e. $\rho = \langle H \rangle$ for some finite $H \subseteq A \times A$).

2. What is coherency?

A monoid S is **right coherent** if every finitely generated S -subact of every finitely presented S -act is finitely presented.

Consider $A = F_X^S/\rho$ where X is finite and ρ is finitely generated.

A typical element of A looks like $[xu] = [x]u$.

Let $B = [x_1]u_1S \cup \dots \cup [x_k]u_kS$ be finitely generated. For S to be right coherent, we need the kernel of

$$\begin{aligned} y_1S \cup \dots \cup y_kS &\rightarrow B \\ y_i &\mapsto [x_i]u_i \end{aligned}$$

to be finitely generated.

In particular, for any $s \in S$, considering $S \rightarrow sS, 1 \mapsto s$ we have

$$\mathbf{r}(s) = \{(u, v) \in S \times S : su = sv\}$$

is finitely generated.

Why are we interested in coherency?

Theorem Wheeler 76 The following conditions are equivalent:

- ① The theory of S -acts (in the appropriate first order language) has a **model companion**;
- ② the class of existentially closed S -acts \mathcal{E} is **axiomatisable**;
- ③ S is **right coherent**.

If any of the above hold, the sentences of the model companion axiomatise \mathcal{E} .

Question Which monoids are right coherent?

A result that helps us check when S is right coherent

Let A be an S -act and let $c \in A$. We define

$$\mathbf{r}(c) = \{(u, v) \in S \times S : cu = cv\}.$$

Notice that $\mathbf{r}(c)$ is a right congruence on S ; it is the **right annihilator** congruence of c .

Theorem G 19■■ The f.a.e. for S :

- ① S is right coherent;
- ② every finitely generated S -subact of every S/ρ , where ρ is finitely generated, is finitely presented;
- ③ for every finitely generated right congruence ρ on S and every $a, b \in S$ we have $\mathbf{r}([a])$ is finitely generated, and $[a]S \cap [b]S$ is finitely generated.

What do we really mean by $r([a])$ being finitely generated?

Recall

$$\mathbf{r}(c) = \{(u, v) \in S \times S : cu = cv\}$$

so that here

$$\begin{aligned}\mathbf{r}([a]) &= \{(u, v) \in S \times S : [a]u = [a]v\} \\ &= \{(u, v) \in S \times S : au \rho av\}.\end{aligned}$$

3. Which monoids are right coherent?

Observation Finite monoids are right coherent.

Theorem G 19■■ Any Clifford monoid S is right coherent.

Note that this means groups and semilattices are right coherent.

Proof.

Let $\rho = \langle H \rangle$ where H is finite, and let $a \in S$. Note that

$$a1 = a(a'a)$$

so $(1, a'a) \in r([a])$. Also, for any $(u, v) \in H$ we have

$$aa'u = uaa' \rho vaa' = aa'v$$

so that $(a'u, a'v) \in r([a])$. Hence

$$K = \{(1, a'a)\} \cup \{(a'u, a'v) : (u, v) \in H\} \subseteq r([a]).$$

On the other hand, if $(h, k) \in r([a])$, we have an H -sequence

$$ah = c_1 t_1, d_1 t_1 = c_2 t_2, \dots, d_n t_n = ak.$$

Then $h = 1h \langle K \rangle a'ah = a'c_1 t_1 \langle K \rangle a'd_1 t_1 = a'c_2 t_2 \langle K \rangle \dots \langle K \rangle a'd_n t_n = a'ak \langle K \rangle 1k = k$, so that $h \langle K \rangle k$. □

Free objects and coherency

Theorem **Choo, Lam, Luft 1972** Free rings are right coherent

Proposition **G, 1992** Free commutative monoids are right coherent.

Theorem **G, Hartmann, Ruskuc 2012/13** Free monoids are right coherent.

Recall that any free group $FG(X)$ is right coherent.

Proposition Free inverse monoids are **not** right coherent.

Recall that if X is a set, then the free inverse monoid $FI(X)$ has set

$$\{(A, a) : A \subseteq FG(X), A \text{ finite and prefix closed}, a \in A\}$$

with multiplication given by

$$(A, a)(B, b) = (A \cup aB, ab).$$

Note that $(A, a)^{-1} = (a^{-1}A, a^{-1})$ and $(A, a)(A, a)^{-1} = (A, 1) = (A, a)^+$.

Theorem Fountain, 1981 The free left ample monoid on X is the submonoid

$$FLA(X) = \{(A, a) \in FI(X) : A \subseteq X^*\}$$

of $FI(X)$.

Theorem Free left ample monoids are right (but not left) coherent.

Idea of proof that X^* is right coherent:

Suppose that $\rho = \langle H \rangle$ where H is finite, and $au \rho av$.

Then there is a ρ -sequence

$$au = c_1 t_1, d_1 t_1 = c_2 t_2, \dots, d_n t_n = av.$$

By cancellation we can assume one of $u = t_0, t_1, \dots, t_n, t_{n+1} = v$ is ϵ .

If $t_k = \epsilon$, then $au \rho c_k$. Consider

$$au = c_1 t_1, d_1 t_1 = c_2 t_2, \dots, d_{k-2} t_{k-2} = c_{k-1} t_{k-1}, (d_{k-1} t_{k-1} = c_k)$$

By cancellation, there exists $z \in X^*$ with

$$u = u'z, t_i = t'_i z \text{ and } t'_j = \epsilon.$$

Then $au' \rho c_j$.

If $c_k = c_j$, then

$$au' \rho au \rho av$$

and use induction on length of words.

Right coherent and right noetherian monoids

A monoid S is **weakly right noetherian** if every right ideal is finitely generated.

S is **right noetherian** if every right congruence is finitely generated.

Theorem Normak 77 If S is right noetherian, it is right coherent.

Example Fountain 92 There exists a weakly right noetherian S which is not right coherent.

How is being weakly right noetherian related to being right coherent?

Proposition G, 2005 Regular monoids for which every right ideal is principal are right coherent, e.g. **bicyclic monoids** and **Bruck-Reilly semigroups** $BR(G, \theta)$, where G is a group.

Right coherent and right noetherian monoids: G, Hartmann, Ruskuc, Yang 2012/13

Theorem (a) Regular monoids for which certain 'annihilator right ideals' are finitely generated are right coherent.

e.g. $(\mathbb{Z} \times \mathbb{Z})^1$ with 'bicyclic' multiplication.

Consequently, weakly right noetherian regular monoids are right coherent.

(b) Brandt semigroups with 1 adjoined are right coherent and such that the 'annihilator ideals' need not be finitely generated.

4. Closure properties of the class of coherent monoids: G,H,R,Y 2012/13

Negative results

Let \mathcal{RC} be the class of right coherent monoids.

Result 1 The class \mathcal{RC} is not closed under direct products: the direct product of two free monoids is not right coherent.

Result 2 The class \mathcal{RC} is not closed under submonoids.

Proof We have that $X^* \times X^*$ is a submonoid of $FG(X) \times FG(X)$ and the latter is a group, so right coherent.

Result 3 The class \mathcal{RC} is not closed under (a) morphisms (b) inverse images.

Proof (a) X^* is right coherent and not all monoids are;
(b) some inverse monoids are right coherent by $FI(X)$ is not.

Closure properties of the class of coherent monoids: G,H,R,Y 2012/13

Positive results

Recall that a **retract** of a monoid S is a submonoid T such that $T = \text{Im } \theta$ for some idempotent morphism $\theta : S \rightarrow S$.

Result 4 The class \mathcal{RC} is closed under:

- (a) retracts;
- (b) monoid \mathcal{J} -classes.

Closure properties of the class of coherent monoids: G,H,R,Y 2012/13

Positive results

Let M be a monoid: **Two common constructions**

Brandt extension Let I be a non-empty set. Then

$$\mathcal{B}^0(M, I) = (I \times M \times I) \cup \{0\}$$

is a semigroup where all products are zero except

$$(i, m, j)(j, n, h) = (i, mn, h).$$

Bruck-Reilly extension

Let $\theta : M \rightarrow M$ be a morphism, then

$$BR(M, \theta) = \mathbb{N}^0 \times M \times \mathbb{N}^0$$

with multiplication

$$(a, m, b)(c, n, d) = (a - b + t, m\theta^{t-b}n\theta^{t-c}, d - c + t)$$

where $t = \max\{b, c\}$.

Closure properties of the class of coherent monoids: G,H,R,Y 2012/13

Positive results

Result 5 Let M be a monoid. If (a) $(\mathcal{B}^0(M, I))^1$ or (b) $BR(M, \theta)$ is right coherent, then so is M .

Result 6 If M is right coherent, then so is $(\mathcal{B}^0(M, I))^1$.

5. Further questions/unfinished theorems

- ① If M is right coherent, is $BR(M, \theta)$?
- ② Closure of \mathcal{RC} under Rees quotients, Rees matrix construction, up-down results of adding and subtraction zeroes and identities, 0-direct unions, certain direct and semidirect products.
- ③ Right coherency for semigroups.
- ④ A consistent (coherent) approach - working within \mathcal{D} -classes.
- ⑤ Connection with direct products/ultraproducts of flat **left** S -acts.
- ⑥ $\mathcal{T}_X, \mathcal{I}_X$?