

Free idempotent generated semigroups and endomorphism monoids of free G -acts

Dandan Yang

University of York

Based on joint work with Igor Dolinka and Victoria Gould

Free idempotent generated semigroups

Let E be a biordered set (equivalently, a set of idempotents E of a semigroup S).

The free idempotent generated semigroup $\text{IG}(E)$ is a free object in the category of semigroups that are generated by E , defined by

$$\text{IG}(E) = \langle \bar{E} : \bar{e}\bar{f} = \bar{e}\bar{f}, e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset \rangle.$$

where $\bar{E} = \{\bar{e} : e \in E\}$.

Note It is more usual to identify elements of E with those of \bar{E} , but it helps the clarity of our later arguments to make this distinction.

Facts

- ① $\text{IG}(E) = \langle \bar{E} \rangle$.
- ② The natural map $\phi : \text{IG}(E) \rightarrow S$, given by $\bar{e}\phi = e$, is a morphism onto $S' = \langle E(S) \rangle$.
- ③ The restriction of ϕ to the set of idempotents of $\text{IG}(E)$ is a bijection.
- ④ The morphism ϕ induces a bijection between the set of all \mathcal{R} -classes (resp. \mathcal{L} -classes) in the \mathcal{D} -class of \bar{e} in $\text{IG}(E)$ and the corresponding set in $S' = \langle E(S) \rangle$.
- ⑤ The morphism ϕ is an onto morphism from $H_{\bar{e}}$ to H_e .

Maximal subgroups of $\text{IG}(E)$

Work of [Pastijn \(1977, 1980\)](#), [Nambooripad and Pastijn \(1980\)](#), [McElwee \(2002\)](#) led to a conjecture that all these groups must be free groups.

[Brittenham, Margolis and Meakin \(2009\)](#)

$\mathbb{Z} \oplus \mathbb{Z}$ can be a maximal subgroup of $\text{IG}(E)$, for some E .

[Gray and Ruskuc \(2012\)](#)

Any group occurs as a maximal subgroup of some $\text{IG}(E)$, a general presentation and a special choice of E are needed.

[Gould and Yang \(2012\)](#)

Any group occurs as a maximal subgroup of a natural $\text{IG}(E)$, a simple approach suffices.

[Dolinka and Ruskuc \(2013\)](#)

Any group occurs as $\text{IG}(E)$ for some *band*.

Maximal subgroups of $\text{IG}(E)$

Given a special biordered set E , which kind of groups can be the maximal subgroups of $\text{IG}(E)$?

Let S be a semigroup with $E = E(S)$. Let $e \in E$. Our aim is to find the relationship between the maximal subgroup $H_{\bar{e}}$ of $\text{IG}(E)$ with identity \bar{e} and the maximal subgroup H_e of S with identity e .

There is an onto morphism from $H_{\bar{e}}$ to H_e .

Is $H_{\bar{e}} \cong H_e$, for some E and some $e \in E$?

T_n (\mathcal{PT}_n) - full (partial) transformation monoid, E - its biordered set.

Gray and Ruskuc (2012); Dolinka (2013)

rank $e = r < n - 1$, $H_{\bar{e}} \cong H_e \cong \mathcal{S}_r$.

Brittenham, Margolis and Meakin (2010)

$M_n(D)$ - full linear monoid, E - its biordered set.

rank $e = 1$ and $n \geq 3$, $H_{\bar{e}} \cong H_e \cong D^*$.

Dolinka and Gray (2012)

rank $e = r < n/3$ and $n \geq 4$, $H_{\bar{e}} \cong H_e \cong GL_r(D)$.

Note rank $e = n - 1$, $H_{\bar{e}}$ is free; rank $e = n$, $H_{\bar{e}}$ is trivial.

Independence algebras

Sets and vector spaces over division rings are examples of **independence algebras**.

[Fountain and Lewin \(1992\)](#)

Let \mathbf{A} be an independence algebra of rank n , where $n \in \mathbb{N}$ is finite.

Let $\text{End } \mathbf{A}$ be the endomorphism monoid of \mathbf{A} . Then

$$S(\text{End } \mathbf{A}) = \{\alpha \in \text{End } \mathbf{A} : \text{rank } \alpha < n\} = \langle E \setminus \{I\} \rangle.$$

[Gould \(1995\)](#)

For any $\alpha, \beta \in \text{End } \mathbf{A}$, we have the following:

- (i) $\text{im } \alpha = \text{im } \beta$ if and only if $\alpha \mathcal{L} \beta$;
- (ii) $\text{ker } \alpha = \text{ker } \beta$ if and only if $\alpha \mathcal{R} \beta$;
- (iii) $\text{rank } \alpha = \text{rank } \beta$ if and only if $\alpha \mathcal{D} \beta$ if and only if $\alpha \mathcal{J} \beta$.

Independence algebras

The results on the biordered set of idempotents of \mathcal{T}_n and $M_n(D)$ suggest that it would be worth looking into the maximal subgroups of $\text{IG}(E)$, where $E = E(\text{End } \mathbf{A})$.

The diverse method needed in the biordered sets of \mathcal{T}_n and $M_n(D)$ indicate that it would be very hard to find a unified approach to $\text{End } \mathbf{A}$.

It was pointed out by [Gould](#) that **free G -acts** provide us with another kind of independence algebras.

Let G be a group, $n \in \mathbb{N}, n \geq 3$. Let $F_n(G)$ be a rank n **free left G -act**.

Recall that, as a set,

$$F_n(G) = \{gx_i : g \in G, i \in [1, n]\};$$

identify x_i with $1x_i$, where 1 is the identity of G ;

$gx_i = hx_j$ if and only if $g = h$ and $i = j$;

the action of G is given by $g(hx_i) = (gh)x_i$.

Endomorphism monoids of free left G-acts

Let $\text{End } F_n(G)$ be the endomorphism monoid of $F_n(G)$ with $E = E(\text{End } F_n(G))$.

The **rank** of an element of $\text{End } F_n(G)$ is the minimal number of (free) generators in its image.

An element $\alpha \in \text{End } F_n(G)$ depends only on its action on the free generators $\{x_i : i \in [1, n]\}$.

For convenience we denote α by

$$\alpha = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ w_1^\alpha x_{1\bar{\alpha}} & w_2^\alpha x_{2\bar{\alpha}} & \dots & w_n^\alpha x_{n\bar{\alpha}} \end{pmatrix},$$

where $\bar{\alpha} \in \mathcal{T}_n$, $w_1^\alpha, \dots, w_n^\alpha \in G$.

Note $\text{End } F_n(G) \cong G \wr \mathcal{S}_n$ and $\mathcal{S}(\text{End } F_n(G)) = \langle E \setminus \{I\} \rangle$.

For any rank r idempotent $\varepsilon \in E$, where $1 \leq r \leq n$, we have

$$H_\varepsilon \cong G \wr \mathcal{S}_r.$$

How about the maximal subgroup $H_{\bar{\varepsilon}}$ of $\text{IG}(E)$?

To specialise Gray and Ruškuc's presentation of maximal subgroups of $\text{IG}(E)$ to our particular circumstance.

Step 1

To obtain an explicit description of a Rees matrix semigroup isomorphic to the semigroup $D_r^0 = D_r \cup \{0\}$, where

$$D_r = \{\alpha \in \text{End } F_n(G) \mid \text{rank } \alpha = r\}.$$

Let \mathcal{I} and Λ denote the set of \mathcal{R} -classes and the set of \mathcal{L} -classes of D_r , respectively.

Here we may take \mathcal{I} as the set of kernels of elements in D_r , and $\Lambda = \{(u_1, u_2, \dots, u_r) : 1 \leq u_1 < u_2 < \dots < u_r \leq n\} \subseteq [1, n]^r$.

Let $H_{i\lambda} = R_i \cap L_\lambda$.

A presentation for $H_{\bar{\varepsilon}}$

Assume $1 \in I \cap \Lambda$ with

$$1 = \langle (x_1, x_i) : r+1 \leq i \leq n \rangle \in I, 1 = (1, \dots, r) \in \Lambda.$$

So $H = H_{11}$ is a group with identity $\varepsilon = \varepsilon_{11}$.

A typical element of H looks like

$$\alpha = \begin{pmatrix} x_1 & x_2 & \dots & x_r & x_{r+1} & \dots & x_n \\ w_1^\alpha x_{1\bar{\alpha}} & w_2^\alpha x_{2\bar{\alpha}} & \dots & w_r^\alpha x_{r\bar{\alpha}} & w_1^\alpha x_{1\bar{\alpha}} & \dots & w_1^\alpha x_{1\bar{\alpha}} \end{pmatrix}$$

where $\bar{\alpha} \in \mathcal{T}_n$, $w_1^\alpha, \dots, w_r^\alpha \in G$.

Abbreviate α as

$$\alpha = \begin{pmatrix} x_1 & x_2 & \dots & x_r \\ w_1^\alpha x_{1\bar{\alpha}} & w_2^\alpha x_{2\bar{\alpha}} & \dots & w_r^\alpha x_{r\bar{\alpha}} \end{pmatrix}.$$

In particular,

$$\varepsilon = \varepsilon_{11} = \begin{pmatrix} x_1 & x_2 & \dots & x_r \\ x_1 & x_2 & \dots & x_r \end{pmatrix}.$$

A presentation for $H_{\bar{\varepsilon}}$

For any $\alpha \in D_r$, $\ker \bar{\alpha}$ induces a partition

$$\{B_1^\alpha, \dots, B_r^\alpha\}$$

on $[1, n]$ with a set of minimum elements

$$l_1^\alpha, \dots, l_r^\alpha \text{ such that } l_1^\alpha < \dots < l_r^\alpha.$$

Put

$$\Theta = \{\alpha \in D_r : x_{l_j^\alpha} \alpha = x_j, j \in [1, r]\}.$$

Then it is a transversal of the \mathcal{H} -classes of L_1 .

For each $i \in I$, define r_i as the unique element in $\Theta \cap H_{i1}$.

We say that r_i lies in **district** $(l_1^{r_i}, l_2^{r_i}, \dots, l_r^{r_i})$ (of course, $1 = l_1^{r_i}$).

For each $\lambda = (u_1, u_2, \dots, u_r) \in \Lambda$, define

$$\mathbf{q}_\lambda = \mathbf{q}_{(u_1, \dots, u_r)} = \begin{pmatrix} x_1 & x_2 & \cdots & x_r & x_{r+1} & \cdots & x_n \\ x_{u_1} & x_{u_2} & \cdots & x_{u_r} & x_{u_1} & \cdots & x_{u_1} \end{pmatrix}.$$

A presentation for $H_{\bar{\varepsilon}}$

We have that $D_r^0 = D_r \cup \{0\}$ is completely 0-simple, and hence

$$D_r^0 \cong \mathcal{M}^0(H; I, \Lambda; P),$$

where $P = (\mathbf{p}_{\lambda i})$ and

$$\mathbf{p}_{\lambda i} = (\mathbf{q}_\lambda \mathbf{r}_i) \text{ if } \text{rank } \mathbf{q}_\lambda \mathbf{r}_i = r$$

and is 0 else.

Note

$\begin{bmatrix} \varepsilon_{i\lambda} & \varepsilon_{i\mu} \\ \varepsilon_{k\lambda} & \varepsilon_{k\mu} \end{bmatrix}$ is a singular square $\iff \mathbf{p}_{\lambda i}^{-1} \mathbf{p}_{\lambda k} = \mathbf{p}_{\mu i}^{-1} \mathbf{p}_{\mu k}$.

A presentation for $H_{\bar{\varepsilon}}$

Step 2

Define a **schreier system** of words $\{\mathbf{h}_\lambda : \lambda \in \Lambda\}$ inductively, using the restriction of the lexicographic order on $[1, n]^r$ to Λ .

Put $\mathbf{h}_{(1, 2, \dots, r)} = 1$;

For any $(u_1, u_2, \dots, u_r) > (1, 2, \dots, r)$, take $u_0 = 0$ and i the largest such that $u_i - u_{i-1} > 1$. Then

$$(u_1, \dots, u_{i-1}, u_i - 1, u_{i+1}, \dots, u_r) < (u_1, u_2, \dots, u_r).$$

Define

$$\mathbf{h}_{(u_1, \dots, u_r)} = \mathbf{h}_{(u_1, \dots, u_{i-1}, u_i - 1, u_{i+1}, \dots, u_r)} \alpha_{(u_1, \dots, u_r)},$$

where

$$\alpha_{(u_1, \dots, u_r)} = \begin{pmatrix} x_1 & \cdots & x_{u_1} & x_{u_1+1} & \cdots & x_{u_2} & \cdots & x_{u_{r-1}+1} & \cdots & x_{u_r} & x_{u_r+1} & \cdots & x_n \\ x_{u_1} & \cdots & x_{u_1} & x_{u_2} & \cdots & x_{u_2} & \cdots & x_{u_r} & \cdots & x_{u_r} & x_{u_r} & \cdots & x_{u_r} \end{pmatrix}$$

A presentation for $H_{\bar{\varepsilon}}$

Facts

- ① $\varepsilon \mathbf{h}_{(u_1, \dots, u_r)} = \mathbf{q}_{(u_1, \dots, u_r)}.$
- ② $\mathbf{h}_{(u_1, \dots, u_r)}$ induces a bijection from $L_{(1, \dots, r)}$ onto $L_{(u_1, \dots, u_r)}$ in both $\text{End } F_n(G)$ and $\text{IG}(E)$.

Hence $\{\mathbf{h}_\lambda : \lambda \in \Lambda\}$ forms the required schreier system for the presentation for $\bar{H} = H_{\bar{\varepsilon}}$.

Step 3

Define a function

$$\omega : I \longrightarrow \Lambda, i \mapsto \omega(i) = (l_1^{r_i}, l_2^{r_i}, \dots, l_r^{r_i}).$$

Note $\mathbf{p}_{\omega(i), i} = \varepsilon.$

Put

$$K = \{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\}.$$

A presentation for $H_{\bar{\varepsilon}}$

Proposition Let $E = E(\text{End } F_n(G))$. Then the maximal subgroup \overline{H} of $\bar{\varepsilon}$ in $\text{IG}(E)$ is defined by the presentation

$$\mathcal{P} = \langle F : \Sigma \rangle$$

with generators:

$$F = \{f_{i,\lambda} : (i, \lambda) \in K\}$$

and defining relations Σ :

$$(R1) \ f_{i,\lambda} = f_{i,\mu} \quad (\mathbf{h}_\lambda \varepsilon_{i\mu} = \mathbf{h}_\mu);$$

$$(R2) \ f_{i,\omega(i)} = 1 \quad (i \in I);$$

$$(R3) \ f_{i,\lambda}^{-1} f_{i,\mu} = f_{k,\lambda}^{-1} f_{k,\mu} \quad \left(\begin{bmatrix} \varepsilon_{i\lambda} & \varepsilon_{i\mu} \\ \varepsilon_{k\lambda} & \varepsilon_{k\mu} \end{bmatrix} \text{ is singular i.e. } \mathbf{p}_{\lambda i}^{-1} \mathbf{p}_{\lambda k} = \mathbf{p}_{\mu i}^{-1} \mathbf{p}_{\mu k} \right).$$

A presentation for $H_{\bar{\varepsilon}}$

Note If $\text{rank } \varepsilon = n - 1$, then $H_{\bar{\varepsilon}}$ is free, as no non-trivial singular squares exist; if $\text{rank } \varepsilon = n$, then $H_{\bar{\varepsilon}}$ is trivial.

How about $H_{\bar{\varepsilon}}$, where $1 \leq \text{rank } \varepsilon \leq n - 2$?

Given a pair $(i, \lambda) \in K$, we have a generator $f_{i,\lambda}$ and an element $0 \neq \mathbf{p}_{\lambda i} \in P$.

To find the relationship between these generators $f_{i,\lambda}$ and non-zero elements $\mathbf{p}_{\lambda i} \in P$.

Lemma If $(i, \lambda) \in K$ and $\mathbf{p}_{\lambda i} = \varepsilon$, then $f_{i, \lambda} = 1_{\overline{H}}$.

Idea. The proof follows by induction on $\lambda \in \Lambda$, ordered lexicographically. Here we make use of our particular choice of schreier system and function ω .

Lemma If $\mathbf{p}_{\lambda i} = \mathbf{p}_{\mu i}$, then $f_{i,\lambda} = f_{i,\mu}$.

The proof is straightforward.

Lemma If $\mathbf{p}_{\lambda i} = \mathbf{p}_{\lambda j}$, then $f_{i,\lambda} = f_{j,\lambda}$.

Idea. For any $i, j \in I$, suppose that \mathbf{r}_i and \mathbf{r}_j lie in districts $(1, k_2, \dots, k_r)$ and $(1, l_2, \dots, l_r)$, respectively. We call $u \in [1, n]$ a mutually **bad** element of \mathbf{r}_i with respect to \mathbf{r}_j , if there exist $m, s \in [1, r]$ such that $u = k_m = l_s$, but $m \neq s$; all other elements are said to be mutually **good** with respect to \mathbf{r}_i and \mathbf{r}_j .

We proceed by induction on the number of bad elements.

Connectivity of elements in the sandwich matrix

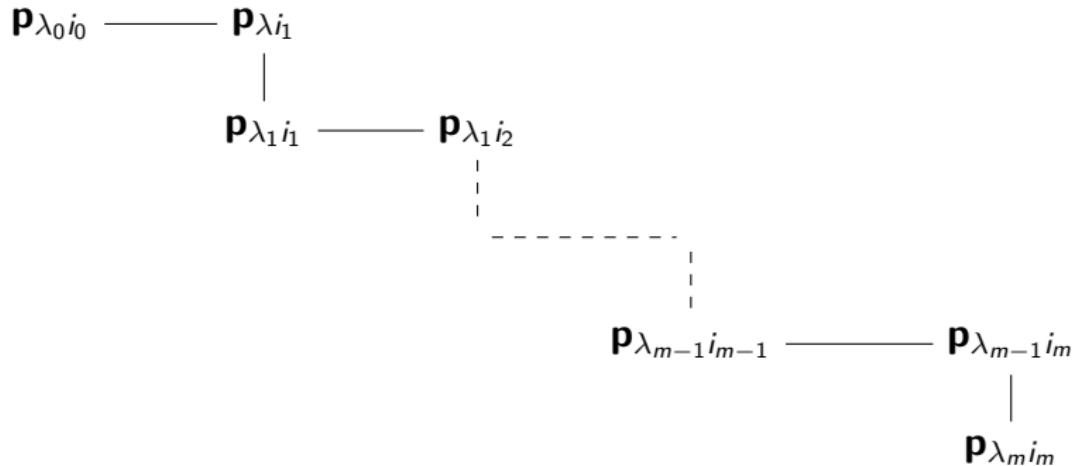
Definition Let $i, j \in I$ and $\lambda, \mu \in \Lambda$ such that $\mathbf{p}_{\lambda i} = \mathbf{p}_{\mu j}$. We say that $(i, \lambda), (j, \mu)$ are *connected* if there exist

$$i = i_0, i_1, \dots, i_m = j \in I \text{ and } \lambda = \lambda_0, \lambda_1, \dots, \lambda_m = \mu \in \Lambda$$

such that for $0 \leq k < m$ we have $\mathbf{p}_{\lambda_k i_k} = \mathbf{p}_{\lambda_k, i_{k+1}} = \mathbf{p}_{\lambda_{k+1} i_{k+1}}$.

Connectivity of elements in the sandwich matrix

The following picture illustrates that $(i, \lambda) = (i_0, \lambda_0)$ is connected to $(j, \mu) = (i_m, \lambda_m)$:



Lemma Let $i, j \in I$ and $\lambda, \mu \in \Lambda$ be such that $\mathbf{p}_{\lambda i} = \mathbf{p}_{\mu j}$ where $(i, \lambda), (j, \mu)$ are connected. Then $f_{i, \lambda} = f_{j, \mu}$.

The result for $n \geq 2r + 1$

Lemma Let $n \geq 2r + 1$. Let $\lambda = (u_1, \dots, u_r) \in \Lambda$, and $i \in I$ with $\mathbf{p}_{\lambda i} \in H$. Then (i, λ) is connected to (j, μ) for some $j \in I$ and $\mu = (n - r + 1, \dots, n)$.

Consequently, if $\mathbf{p}_{\lambda i} = \mathbf{p}_{\nu k}$ for any $i, k \in I$ and $\lambda, \nu \in \Lambda$, then $f_{i, \lambda} = f_{k, \nu}$.

We may define

$$f_\phi = f_{i, \lambda}, \text{ if } \mathbf{p}_{\lambda i} = \phi \in H.$$

Lemma Let $r \leq n/3$. Then for any $\phi, \theta \in H$,

$$f_{\phi\theta} = f_\theta f_\phi \text{ and } f_{\phi^{-1}} = f_\phi^{-1}$$

Note Every element of H appears in P .

Theorem Let $r \leq n/3$. Then

$$\overline{H} \cong H, \quad f_\phi \mapsto \phi^{-1}.$$

The result for $r \leq n - 2$

For larger r this strategy will fail... :-(

Two main problems:

for $r \geq n/2$, not every element of H lies in P ;

we lose connectivity of elements in P , even if $r = n/2$.

However, for $r \leq n - 2$ all elements with **simple form**

$$\phi = \begin{pmatrix} x_1 & x_2 & \cdots & x_{k-1} & x_k & x_{k+1} & \cdots & x_{k+m-1} & x_{k+m} & x_{k+m+1} & \cdots & x_r \\ x_1 & x_2 & \cdots & x_{k-1} & x_{k+1} & x_{k+2} & \cdots & x_{k+m} & ax_k & x_{k+m+1} & \cdots & x_r \end{pmatrix},$$

where $k \geq 1, m \geq 0, a \in G$, lie in P .

The result for $r \leq n - 2$

Lemma Let $\varepsilon \neq \phi = \mathbf{p}_{\lambda i}$ where $\lambda = (u_1, \dots, u_r)$ and $i \in I$. Then (i, λ) is connected to (j, μ) where

$$\mu = (1, \dots, k-1, k+1, \dots, r+1) \text{ and } j \in I.$$

Lemma Let $\mathbf{p}_{\lambda i} = \mathbf{p}_{\nu k}$ have simple form. Then $f_{i, \lambda} = f_{k, \nu}$.

Our aim here is to prove that for any $\alpha \in H$, if $i, j \in I$ and $\lambda, \mu \in \Lambda$ with $\mathbf{p}_{\lambda i} = \mathbf{p}_{\mu j} = \alpha \in H$, then $f_{i, \lambda} = f_{j, \mu}$. This property of α is called **consistency**.

Note All elements with simple form are consistent.

The result for $r \leq n - 2$

How to split an arbitrary element α in H into a product of elements with simple form?

Moreover, how this splitting match the products of generators $f_{i,\lambda}$ in \overline{H} .

The result for $r \leq n - 2$

Definition Let $\alpha \in H$. We say that α has *rising point* $r + 1$ if $x_m\alpha = ax_r$ for some $m \in [1, r]$ and $a \neq 1_G$; otherwise, the rising point is $k \leq r$ if there exists a sequence

$$1 \leq i < j_1 < j_2 < \cdots < j_{r-k} \leq r$$

with

$$x_i\alpha = x_k, x_{j_1}\alpha = x_{k+1}, x_{j_2}\alpha = x_{k+2}, \dots, x_{j_{r-k}}\alpha = x_r$$

and such that if $l \in [1, r]$ with $x_l\alpha = ax_{k-1}$, then if $l < i$ we must have $a \neq 1_G$.

The result for $r \leq n - 2$

Fact The only element with rising point 1 is the identity of H , and elements with rising point 2 have either of the following two forms:

$$(i) \alpha = \begin{pmatrix} x_1 & x_2 & \cdots & x_r \\ ax_1 & x_2 & \cdots & x_r \end{pmatrix}, \text{ where } a \neq 1_G;$$

$$(ii) \alpha = \begin{pmatrix} x_1 & x_2 & \cdots & x_{k-1} & x_k & x_{k+1} & \cdots & x_r \\ x_2 & x_3 & \cdots & x_k & ax_1 & x_{k+1} & \cdots & x_r \end{pmatrix}, \text{ where } k \geq 2.$$

Note Both of the above two forms are the so called simple forms; however, elements with simple form can certainly have rising point greater than 2, indeed, it can be $r + 1$.

Lemma Let $\alpha \in H$ have rising point 1 or 2. Then α is consistent.

The result for $r \leq n - 2$

Lemma Every $\alpha \in P$ is consistent. Further, if $\alpha = \mathbf{p}_{\lambda j}$ then

$$f_{j,\lambda} = f_{i_1,\lambda_1} \cdots f_{i_k,\lambda_k},$$

where $\mathbf{p}_{\lambda_t, i_t}$ is an element with simple form, $t \in [1, k]$.

Idea. We proceed by induction on rising points. For any $\alpha \in H$ with rising point $k \geq 3$, we have

$$\alpha = \beta\gamma$$

for some $\beta \in H$ with rising point no more than $k - 1$ and some $\gamma \in H$ with simple form. Further, this splitting matches the products of corresponding generators in \overline{H} .

We may denote all generators $f_{i,\lambda}$ with $\mathbf{p}_{\lambda i} = \alpha$ by f_α , where $(i, \lambda) \in K$.

The result for $r \leq n - 2$

Our eventual aim is to show

$$\overline{H} \cong H \cong G \wr \mathcal{S}_r.$$

Definition We say that for $\phi, \varphi, \psi, \sigma \in P$ the quadruple $(\phi, \varphi, \psi, \sigma)$ is **singular** if $\phi^{-1}\psi = \varphi^{-1}\sigma$ and we can find $i, j \in I, \lambda, \mu \in \Lambda$ with $\phi = \mathbf{p}_{\lambda i}, \varphi = \mathbf{p}_{\mu i}, \psi = \mathbf{p}_{\lambda j}$ and $\sigma = \mathbf{p}_{\mu j}$.

The result for $r \leq n - 2$

Proposition Let $\overline{\overline{H}}$ be the group given by the presentation $\mathcal{Q} = \langle S : \Gamma \rangle$ with generators:

$$S = \{f_\phi : \phi \in P\}$$

and with the defining relations Γ :

- (P1) $f_\phi^{-1}f_\varphi = f_\psi^{-1}f_\sigma$ where $(\phi, \varphi, \psi, \sigma)$ is singular;
- (P2) $f_\epsilon = 1$.

Then $\overline{\overline{H}}$ is isomorphic to \overline{H} .

The result for $r \leq n - 2$

Put

$$\iota_{a,i} = \begin{pmatrix} x_1 & \cdots & x_{i-1} & x_i & x_{i+1} & \cdots & x_r \\ x_1 & \cdots & x_{i-1} & ax_i & x_{i+1} & \cdots & x_r \end{pmatrix};$$

for $1 \leq k \leq r - 1$.

Put

$$(k \ k+1 \cdots k+m) = \begin{pmatrix} x_1 & \cdots & x_{k-1} & x_k & \cdots & x_{k+m-1} & x_{k+m} & x_{k+m+1} & \cdots & x_r \\ x_1 & \cdots & x_{k-1} & x_{k+1} & \cdots & x_{k+m} & x_k & x_{k+m+1} & \cdots & x_r \end{pmatrix}$$

and we denote $(k \ k+1)$ by τ_k .

The result for $r \leq n - 2$

The group $H \cong G \wr \mathcal{S}_r$ has a presentation $\mathcal{U} = \langle Y : \Upsilon \rangle$, with generators

$$Y = \{\tau_i, \iota_{a,j} : 1 \leq i \leq r-1, 1 \leq j \leq r, a \in G\}$$

and defining relations Υ :

- (W1) $\tau_i \tau_i = 1, 1 \leq i \leq r-1;$
- (W2) $\tau_i \tau_j = \tau_j \tau_i, j \pm 1 \neq i \neq j;$
- (W3) $\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}, 1 \leq i \leq r-2;$
- (W4) $\iota_{a,i} \iota_{b,j} = \iota_{b,j} \iota_{a,i}, a, b \in G \text{ and } 1 \leq i \neq j \leq r;$
- (W5) $\iota_{a,i} \iota_{b,i} = \iota_{ab,i}, 1 \leq i \leq r \text{ and } a, b \in G;$
- (W6) $\iota_{a,i} \tau_j = \tau_j \iota_{a,i}, 1 \leq i \neq j, j+1 \leq r;$
- (W7) $\iota_{a,i} \tau_i = \tau_i \iota_{a,i+1}, 1 \leq i \leq r-1 \text{ and } a \in G.$

The result for $r \leq n - 2$

Recall that

$$\overline{\overline{H}} = \langle f_\phi : \phi \in P \rangle,$$

and further decomposition gives

$$\overline{\overline{H}} = \langle f_{\tau_i}, f_{t_{a,j}} : 1 \leq i \leq r-1, 1 \leq j \leq r, a \in G \rangle.$$

The result for $r \leq n - 2$

Find a series of relations (T1) – (T6) satisfied by these generators:

$$(T1) f_{\tau_i} f_{\tau_i} = 1, 1 \leq i \leq r - 1.$$

$$(T2) f_{\tau_i} f_{\tau_j} = f_{\tau_j} f_{\tau_i}, j \pm 1 \neq i \neq j.$$

$$(T3) f_{\tau_i} f_{\tau_{i+1}} f_{\tau_i} = f_{\tau_{i+1}} f_{\tau_i} f_{\tau_{i+1}}, 1 \leq i \leq r - 2.$$

$$(T4) f_{\iota_{a,i}} f_{\iota_{b,j}} = f_{\iota_{b,j}} f_{\iota_{a,i}}, a, b \in G \text{ and } 1 \leq i \neq j \leq r.$$

$$(T5) f_{\iota_{b,i}} f_{\iota_{a,i}} = f_{\iota_{ab,i}}, 1 \leq i \leq r \text{ and } a, b \in G.$$

$$(T6) f_{\iota_{a,i}} f_{\tau_j} = f_{\tau_j} f_{\iota_{a,i}}, 1 \leq i \neq j, j + 1 \leq r.$$

$$(T7) f_{\iota_{a,i}} f_{\tau_i} = f_{\tau_i} f_{\iota_{a,i+1}}, 1 \leq i \leq r - 1 \text{ and } a \in G.$$

Note A twist between (W5) and (T5).

Lemma The group $\overline{\overline{H}}$ with a presentation $\mathcal{Q} = \langle S : \Gamma \rangle$ is isomorphic to the presentation $\mathcal{U} = \langle Y : \Upsilon \rangle$ of H , so that $\overline{\overline{H}} \cong H$.

The result for $r \leq n - 2$

Theorem Let $\text{End } F_n(G)$ be the endomorphism monoid of a free G -act $F_n(G)$ on n generators, where $n \in \mathbb{N}$ and $n \geq 3$, let E be the biordered set of idempotents of $\text{End } F_n(G)$, and let $\text{IG}(E)$ be the free idempotent generated semigroup over E .

For any idempotent $\varepsilon \in E$ with rank r , where $1 \leq r \leq n - 2$, the maximal subgroup \overline{H} of $\text{IG}(E)$ containing $\overline{\varepsilon}$ is isomorphic to the maximal subgroup H of $\text{End } F_n(G)$ containing ε and hence to $G \wr \mathcal{S}_r$.

Note If $r = n$, then \overline{H} is trivial; if $r = n - 1$, then \overline{H} is free.

If $r = 1$, then $H = G$ and so that:

Corollary Every group can be a maximal subgroup of a naturally occurring $\text{IG}(E)$.

The result for $r \leq n - 2$

If G is trivial, then $\text{End } F_n(G)$ is essentially \mathcal{T}_n , so we deduce the following result:

Corollary Let $n \in \mathbb{N}$ with $n \geq 3$ and let $\text{IG}(E)$ be the free idempotent generated semigroup over the biordered set E of idempotents of \mathcal{T}_n .

For any idempotent $\varepsilon \in E$ with rank r , where $1 \leq r \leq n - 2$, the maximal subgroup \overline{H} of $\text{IG}(E)$ containing $\overline{\varepsilon}$ is isomorphic to the maximal subgroup H of \mathcal{T}_n containing ε , and hence to \mathcal{S}_r .