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Free idempotent generated semigroups

Let E be a biordered set (equivalently, a set of idempotents E of a
semigroup S).

The free idempotent generated semigroup IG(E) is a free
object in the category of semigroups that are generated by E,
defined by

IG(E) = (E : ef = ef, e,f € E,{e,f} N{ef, fe} # ().
where E = {&: e € E}.

Note It is more usual to identify elements of E with those of E,
but it helps the clarity of our later arguments to make this
distinction.
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Free idempotent generated semigroups

Facts

@ IG(E) = (E).

@ The natural map ¢ : IG(E) — S, given by 8p = e, is a
morphism onto S’ = (E(S)).

© The restriction of ¢ to the set of idempotents of IG(E) is a
bijection.

@ The morphism ¢ induces a bijection between the set of all
R-classes (resp. L-classes) in the D-class of & in IG(E) and
the corresponding set in S" = (E(S)).

© The morphism ¢ is an onto morphism from Hg to He.
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Maximal subgroups of IG(E)

Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980),
McElwee (2002) led to a conjecture that all these groups must be
free groups.

Brittenham, Margolis and Meakin (2009)
Z @® 7 can be a maximal subgroup of IG(E), for some E.
Gray and Ruskuc (2012)

Any group occurs as a maximal subgroup of some IG(E), a general
presentation and a special choice of E are needed.

Gould and Yang (2012)

Any group occurs as a maximal subgroup of a natural IG(E), a
simple approach suffices.

Dolinka and Ruskuc (2013)

Any group occurs as IG(E) for some band.
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Maximal subgroups of IG(E)

Given a special biordered set E, which kind of groups can be the
maximal subgroups of 1G(E)?

Let S be a semigroup with E = E(S). Let e € E. Our aim is to
find the relationship between the maximal subgroup Hs of IG(E)
with identity € and the maximal subgroup He of S with identity e.

There is an onto morphism from Hg to He.

Is Hz = H,, for some E and some e € E?
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Full transformation monoids and full linear monoids

Tn (PT5) - full (partial) transformation monoid, E - its biordered
set.

Gray and Ruskuc (2012); Dolinka (2013)
ranke=r<n—1, Hs=2 H. = S,.

Brittenham, Margolis and Meakin (2010)

M, (D) - full linear monoid, E - its biordered set.
ranke =1 and n > 3, He &£ H, = D*.

Dolinka and Gray (2012)

ranke = r < n/3 and n > 4, He = H. = GL,(D).

Note ranke = n — 1, Hz is free; rank e = n, Hz is trivial.
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Independence algebras

Sets and vector spaces over division rings are examples of
independence algebras.

Fountain and Lewin (1992)

Let A be an independence algebra of rank n, where n € N is finite.
Let End A be the endomorpshim monoid of A. Then

S(EndA) = {a € EndA :ranka < n} = (E\ {/}).

Gould (1995)
For any «, 8 € End A, we have the following:

(i) ima =im g if and only if « L 3;
(ii) kera = ker g if and only if R 3;
(iii) ranka = rank g if and only if D 3 if and only if o 7 S.
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Independence algebras

The results on the biordered set of idempotents of 7, and M,(D)

suggest that it would be worth looking into the maximal subgroups
of IG(E), where E = E(End A).

The diverse method needed in the biordered sets of 7, and M,(D)

indicate that it would be very hard to find a unified approach to
End A.

It was pointed out by Gould that free G-acts provide us with
another kind of independence algebras.
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Let G be a group, n € N, n > 3. Let F,(G) be a rank n free left
G-act.

Recall that, as a set,

Fo(G)={gxi: g€ G,i€[l,n]};
identify x; with 1x;, where 1 is the identity of G;
gx; = hx; if and only if g = hand i = j;
the action of G is given by g(hx;) = (gh)x;.
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Endomorphism monoids of free left G-acts

Let End F,(G) be the endomorphism monoid of F,(G) with
E = E(End F,(G)).

The rank of an element of End F,(G) is the minimal number of
(free) generators in its image.

An element o € End F,(G) depends only on its action on the free
generators {x; : i € [1,n]}.

For convenience we denote o by

X1 Xo .. Xn
o= ,
Wi'Xig Wy'Xom ... WiXna
where @ € T, wi*, - ,wi € G.

Note End F\(G) = G 1S, and S(End Fo(G)) = (E\ {I}).
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Endomorphism monoids of free left G-acts

For any rank r idempotent € € E, where 1 < r < n, we have
H.- =2 G S,.

How about the maximal subgroup H= of IG(E)?
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A presentation for H:

To specialise Gray and Ruskuc's presentation of maximal
subgroups of IG(E) to our particular circumstance.

Step 1
To obtain an explicit description of a Rees matrix semigroup
isomorphic to the semigroup D% = D, U {0}, where

D, = {a € End F,(G) | rank a = r}.
Let / and A denote the set of R-classes and the set of L-classes of
D,, respectively.

Here we may take / as the set of kernels of elements in D,, and
AN={(u,up,...;u): 1<y <wm<...<u <n}C[Ln]".

Let H) = RN Ly.
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A presentation for H:

Assume 1 € I N A with
1={((x,x):r+1<i<nel,1=(1,---,r)eA.
So H = Hy; is a group with identity € = £13.

A typical element of H looks like

o= X1 X2 . Xr Xr+1 e Xn
wi'xig Wy3Xom ... WPXem WiXig ... W{'Xia
where @ € Ty, wy',--- ,w € G.

Abbreviate « as

X1 X2 N Xr
a = .
Wi'xie WyXom ... W X

. (X1 X2 .. X
E=¢€11 = .
X1 X2 ... X
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A presentation for H:

For any o € D,, ker@ induces a partition
{Bla7 T Bra}
on [1, n] with a set of minimum elements

I, -+, [¢ such that I < - < [

Put
© ={aeDr:xpa=x,j€llr]}
Then it is a transversal of the H-classes of L.

For each i € I, define r; as the unique element in © N H;7.

We say that r; lies in district (1", /3, , If) (of course, 1 = I{').
For each A = (u1, up,...,u,) € A, define
a4 =q _ X X2 0 X Xegp1 ottt Xp
(Ulv"' 7”’) XU1 Xu2 [P Xu, XU1 . e Xu1
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A presentation for H:

We have that D% = D, U {0} is completely 0-simple,
and hence
D% = MO(H; I,A; P),

where P = (p,;) and
Pxi = (qar;) if rankqyr; =r
and is 0 else.

Note

R singular square <= pyipak = P Puk
Ekn  Ekpu Ai pi P
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A presentation for H:

Step 2

Define a schreier system of words {hy : A\ € A} inductively, using
the restriction of the lexicographic order on [1, n]" to A.

Put h(l,2,---,r) = 1;

For any (u1, up,...,ur) > (1,2,--- ,r), take up = 0 and i the
largest such that u; — uj_1 > 1. Then

(U17 e Ui, up — 1, Uiy, ..., ur) < (ul, up, ..., ur).

Define
h(ulf",ur) = h(ul,""Ui—l»uf*]-’uiJrlv"'7Ur)a(ulv"'aur)7
where
a o Xl .. XU1 XU1+1 ... XU2 .. XU,-71+1 .. XUy XU'-+1 e Xn
(Ulv' 7Ur) Xuy 0t Xy Xup Ce Xy, et Xy, e Xy, Xy, .. Xy,
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A presentation for H:

Facts

o Eh(ul,...,u,) = U(uy,...,ur)"
© h(,,. ... ,,) induces a bijection from Ly .. ;) onto Ly, ... 4 in
both End F,(G) and IG(E).

Hence {h) : A € A} forms the required schreier system for the
presentation for H = H=.

Step 3
Define a function
wil— Ni—w(i)= (l{“,lé",...,/,").

Note p,;),;i =¢.

Put
K ={(i,\) € I x A\: H;y is a group}.
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A presentation for H:

Proposition Let £ = E(End F,(G)). Then the maximal subgroup
H of 2 in IG(E) is defined by the presentation

P=(F:%)

with generators:
F={fix: (i,\) € K}

and defining relations X:
(R1) fix=fiu (haeip = hy);
(R2) fioiy=1 (iel)

R3) £}, = f L S\ Sl s singular i.e. pytpak =
(R3) i kA Tk, <[€k/\ €k IS singular I.€. Py; Pxk

P, Pk |-
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A presentation for H:

Note If ranke = n— 1, then Hz is free, as no non-trivial singular
squares exist; if ranke = n, then H= is trivial.

How about H=, where 1 < ranke < n— 27
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A presentation for H:

Given a pair (i, \) € K, we have a generator f;  and an element
0 # pyi € P.

To find the relationship between these generators f; \ and non-zero
elements py; € P.
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Identity generators

Lemma If (i, \) € K and py; = ¢, then f; \ = 1.

Idea. The proof follows by induction on A\ € A, ordered
lexicographically. Here we make use of our particular choice of
schreier system and function w.
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Generators corresponding to the same columns or rows

Lemma If py; = p,i, then f; \ = f; ,.
The proof is straightforward.
Lemma If py; = pyj, then f; \ = f; 5.

Idea. For any i,/ € /, suppose that r; and r; lie in districts

(1, ko, ,kr) and (1, -+, 1), respectively. We call u € [1,n] a
mutually bad element of r; with respect to rj, if there exist

m,s € [1,r] such that u = ky, = Is, but m # s; all other elements
are said to be mutually good with respect to r; and r;.

We proceed by induction on the number of bad elements.
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Connectivity of elements in the sandwich matrix

Definition Let /,j € / and A, x € A such that py; = p,;.
We say that (i, A), (j, 1) are connected if there exist

i:i07i1,...,im:jeland)\:)\O,Al,...,Am:,uE/\

such that for 0 < k < m we have py,i, = Payicss = Phtinss -
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Connectivity of elements in the sandwich matrix

The following picture illustrates that (i, A) = (ip, \o) is connected
to (J, 1) = (imy Am):

PXoio

P

P

p)\mfll‘mfl —— pAmflim

PAmim

Lemma Let /,j € | and A, u € A be such that py; = p,; where
(i, A), (J, ) are connected. Then f; \ = f; .
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The result for n > 2r +1

Lemma Let n > 2r + 1. Let A = (uy,---,ur) €A, and i € [ with
p)i € H. Then (i, \) is connected to (j, 1) for some j € I and
w=(Mn—-r+1,---,n).

Consequently, if py; = pyk for any i,k € [ and \,;v € A, then
fix=fiu

We may define
fo = fix,if pri = ¢ € H.

Lemma Let r < n/3. Then for any ¢,0 € H,
fo = fofy and fy = £,
Note Every element of H appears in P.
Theorem Let r < n/3. Then
H=H, fyrs ¢t
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The result for r < n—2

For larger r this strategy will fail... :-(

Two main problems:

for r > n/2, not every element of H lies in P;

we lose connectivity of elements in P, even if r = n/2.

However, for r < n — 2 all elements with simple form

¢_ X1 X2 0 Xk—1 Xk Xk+1 0 Xk+m—1 Xk4+m Xk4+m+1 ... Xr
X1 X2 vt Xk—1 Xkl Xk42 ccc Xkm  @Xk  Xkgmtl .- Xr )

where k >1,m>0,a € G, liein P.
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The result for r < n—2

Lemma Let € # ¢ = p); where A = (uy,--- ,u,) and i € [. Then
(i, A\) is connected to (j, ) where

p=(1,- k—1,k+1,---,r+1)andj €I

Lemma Let p); = p,« have simple form. Then f; y = f; ,,.

Our aim here is to prove that for any « € H, if i,j € | and
A i€ N with py; = pyj = o € H, then f; \ = f; ,. This property of
« is called consistency.

Note All elements with simple form are consistent.
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The result for r < n—2

How to split an arbitrary element « in H into a product of
elements with simple form?

Moreover, how this splitting match the products of generators f;
in H.
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The result for r < n—2

Definition Let o € H. We say that « has rising point r + 1 if
Xma = ax, for some m € [1,r] and a # 1¢; otherwise, the rising
point is k < r if there exists a sequence

1<i<p<p<---<jr—k<r
with
XiQ = X, Xjy & = Xpe-1, Xjpp Q& = X250+ Xj, (= Xp

and such that if / € [1, r] with xja = ax,_1, then if | < i we must
have a # 1¢.
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The result for r < n—2

Fact The only element with rising point 1 is the identity of H,
and elements with rising point 2 have either of the following two

forms:

) X1 Xo -0 X

(|)a:< ! 2 r>,wherea;«élg;
axiy Xo - Xy

. X1 Xo v Xe—1 Xk X S X

(“) o = 1 2 k—1 k k+1 r ' where
X2 X3 - Xk axiy Xk+1 0 Xr

k > 2.

Note Both of the above two forms are the so called simple forms;
however, elements with simple form can certainly have rising point
greater than 2, indeed, it can be r + 1.

Lemma Let a € H have rising point 1 or 2. Then « is consistent.
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The result for r < n—2

Lemma Every o € P is consistent. Further, if a = p); then
fix = finn o fioa

where py, ;, is an element with simple form, t € [1, k].
Idea. We proceed by induction on rising points. For any o € H
with rising point k > 3, we have

o= [y

for some B € H with rising point no more than k — 1 and some
~v € H with simple form. Further, this splitting matches the
products of corresponding generators in H.

We may denote all generators f; \ with py; = a by f,, where
(i,A\) € K.
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The result for r < n—2

Our eventual aim is to show

H2HX=GS,.

Definition We say that for ¢, ¢, %, 0 € P the quadruple
(¢, ¢, %, 0) is singular if ¢! = o1 and we can find
i,j €1, A e Nwith ¢ =pyi, 0 =pui, v =py and o = p;.
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The result for r < n—2

Proposition Let H be the group given by the presentation
Q = (S : T') with generators:

S:{f¢2 ¢€P}

and with the defining relations I :

(P1) f(z:lf@ = fdjlfa where (¢, p, 1, 0) is singular;
(P2) f. = 1.

Then H is isomorphic to H.
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The result for r < n—2

Put

L= (U X X Xign e X )
a,l — 1
X1 o Xi-1oaxXp Xip1 o o Xr

forl < k<r-—1.
Put

btk = (37 e )

X1 oot Xk—1 Xk+1 ccr Xk4m Xk Xktm+1 ccc X

and we denote (k k + 1) by 7.
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The result for r < n—2

The group H = G S, has a presentation U/ = (Y : T), with
generators

Y:{T,',La,ji 1<i<r—-1, 1§j§r,aEG}

and defining relations T:

(W) rimi=1,1<i<r—-1,

(W2) rirj =1y, j£ 1 # i # J;

(W3) 7iTipami = TiaTiTiyr, 1< i <r—2;

(W4) vaithj = thjtaj, a,b€ Gand 1 < i #j<r;
(W5) tathi = tapi, 1 <i<randa,beG;
(W6) taiTj = Tjtai, L<i#j,j+1<r;

(W?) La,iTi = Tila,i+1, 1<i<r—1land acG.
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The result for r < n—2

Recall that

ﬁ:<f¢2 ¢EP>,

and further decomposition gives

x|

= (f, f,

taj -

1<i<r-11<j<r,acG).
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The result for r < n—2

Find a series of relations (T1) — (T6) satisfied by these generators:

(T )77—,—1 1<i<r-—1.
(T2)ff frofr J £E1F0#].

(T3)f fT 7_ f"7'+1f"7',f’7'+1 1§I§r_2.
(T4) La,LbJ—f f,nabeGandl1<i#j<r.
(T5) f,fi,; =fipn 1<i<randabeG.
(T)f;alij_fTJf;»al?]‘<l#JJ+1<r

(T7) 1, .t = 1, 1<i<r—1landaegG.

Tila,i+1?

Note A twist between (W5) and (T5).

Lemma The group H with a presentation Q = (S:M)yis
isomorphic to the presentation &/ = (Y : T) of H, so that H = H.
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The result for r < n—2

Theorem Let End F,(G) be the endomorphism monoid of a free
G-act F,(G) on n generators, where n € N and n > 3, let E be the
biordered set of idempotents of End F,(G), and let IG(E) be the
free idempotent generated semigroup over E.

For any idempotent;s € E with rank r, where 1 < r < n -2, the
maximal subgroup H of IG(E) containing € is isomorphic to the
maximal subgroup H of End F,(G) containing £ and hence to
GS,.

Note If r = n, then H is trivial; if r = n — 1, then H is free.
If r=1, then H = G and so that:

Corollary Every group can be a maximal subgroup of a naturally
occurring IG(E).
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The result for r < n—2

If G is trivial, then End F,(G) is essentially 7,, so we deduce the
following result:

Corollary Let n € N with n > 3 and let IG(E) be the free
idempotent generated semigroup over the biordered set E of
idempotents of 7,,.

For any idempotent € € E with rank r, where 1 < r < n— 2, the
maximal subgroup H of IG(E) containing € is isomorphic to the
maximal subgroup H of 7, containing €, and hence to S,.
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