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THE SEMIGROUP g8

If S is a discrete space, its Stone-Cech compactification 55 can be
described as the space of ultrafilters on S with the topology for which
the sets of the form A = {p € B3S : A € p}, where A C S, is chosen as
a base for the open sets. (Note that we embed S in 8S by identifying
s € S with the principal ultrafilter {A C §:s € A}.)

BS is then an extremally disconnected compact space and A =
clps(A) for each A C S.

If S is a semigroup, the semigroup operation on S has a natural

extension to 3S.

Given s € S, the map t — st from S to 4.5 has a continuous extension
to 85, which we denote by As. For s € S and ¢ € 55, we put sq = As(q)-
Then, for every q € S, the map s — sq from S to 58S has a continuous
extension to 85, which we denote by p,. We put pg = p,(p). So pg =

lim lim st.
s—=pt—q

It is easy to see that this operation on (S is associative, so that .5 is
a semigroup. It is a right topological semigroup, because p, is continuous
for every ¢ € 8S. In addition, A4 is continuous for every s € S. These two
facts are summed up by saying that 85 is a semigroup compactification
of S. It is the maximal semigroup compactification of S, in the sense that
every other semigroup compactification of S is the image of 85 under a

continuous homomorphism.

We shall use S* to denote the remainder space 55\ S.

If S and T are semigroups, every homorphism from S to T extends
to a continuous homomorphism from S to BT

If T is a subset of a semigroup, F(T') will denote the set of idempo-

tents in 7.



Every compact right topological semigroup 7' has important alge-

braic properties. I shall need to use the following;:
(i) T contains an idempotent; i.e. an element p for which p? = p.

(ii) A non-empty subset V' of T is said to be a left ideal if TV C V
and a right ideal if V' C V. It is an ideal if it is both a left and a
right ideal. T contains a smallest ideal K (7'), which is the union of all its
minimal left ideals and the union of all its minimal right ideals. If L is a
minimal left ideal and R a minimal right ideal of T', then L " R = RL is
a group.

(iii) K(T') always contains an idempotent. An idempotent in K (7T')
is called minimal. An idempotent in 7" is minimal in this sense if and only
if it also minimal for the partial order defined on idempotents by putting
p < q if and only if pg = qp = p. If p is any idempotent in 7', there is an
idempotent ¢ € K (T) satisfying ¢ < p. We also define quasi-orders <p,
and <p on the idempotents of T' by putting p <, q if p¢g = p and p <g ¢
if gp = p.

(iv) If S is a discrete semigroup, a subset of S is said to be central
if it is a member of a minimal idempotent in 5S. Central sets have very

rich combinatorial properties.
APPLICATIONS TO RAMSEY THEORY

Ramsey Theory is the study of properties of finite partitions of a
given set. We shall often refer to a finite partition of a set S as a finite
colouring of S, and call a subset of S monochrome if it is contained in a

cell of the partition.
Observe that, given any finite colouring of S and any ultrafilter p €

B85S, p will have a member that is monochrome.

HINDMAN’S THEOREM



Notation

Given a sequence (x,,) in a semigroup, F P(z,) denotes the set of all
L withng <ng < -+ <ng. (If Sis
denoted additively, we might denote this set by F'S(x,).)

products of the form z,,x,, - x,

If S is a semigroup, p is an idempotent in S and A € P, then
A* ={se€ A:s71A cp}, where s71A={t € S:st e A}. It is easy to
show that A* € p and that t =1 A* € p for every t € A*.

Hindman’sTheorem

Let S be a semigroup. Given any finite colouring of S, there is a

(. @]

sequence (z,)°° ; in S such that F'P(zx,) is monochrome.

Ultrafilterproof (Galvin Glazer)

I shall show that, if p is an idempotent in S and A € p, then
FP(z,) C A for some sequence (x,) in S.

Choose any x1 € A*. Then assume that xi,x9,---,x, have been
chosen so that F'P(z;);—; C A*. Choose zni1 € A" N[ \ycppran y LA*
This is possible, because this set is a finite intersection of elements of p
and is therefore non-empty. Then FP{(x;)" ! C A*. O

Note that, if p € S\ S, (x,) can be chosen as a sequence of distinct

points.

THEOREM

Given a finite colouring of N, there exist infinite sequences (x,,) and
(yn) in N such that F'S(z,) U FP(y,) is monochrome.

Proof



There is an idempotent p in K(N,-) which is in the closure of the
idempotents in K (8N, +).

This follows from the fact that the closure of the minimal idempo-
tents in (SN, +) is a left ideal in (SN, -).

So every member of p is also a member of an idempotent in (8N, +).

O

VAN DER WAERDEN’S THEOREM
Theorem

Let (S,+) be a commutative semigroup. Given any finite colouring

of S, there is an arbitrarily long AP which is monochrome.
Proof

We shall show that, if p € K(8S) and A € p then A contains arbi-
trarily long AP’s.
Let £ € N and put T = (85)*. Put p = (p,p,p,---,p) € T. We
define subsets E and I of S¢ as follows:
I= {(a,a+d,a+2d,---,a+ (—1)d):a,de S}
E = {(a,a,a,---,a) :a€ S}UI '
Then FE' is a subsemigroup of 17" and [ is an ideal in F.
Furthermore, E is a subsemigroup of T and I is an ideal in E. Now
p € F and it follows easily that p € K(E). So p € I. Since A s a
neighbourhood of p in T, A nr=4ANnT # (). So there exist a,d € S
such that (a,a +d,a+2d,---,a+ ({ —1)d) € A" O

COROLLARY

Given a finite colouring of N, there is an arbitrarily long AP A and

an arbitrarily long GP G such that A U G is monochrome.
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Proof

We can choose p € K(BN,-) N K(BN,+). Then every member of p
contains arbitrarily long AP’s and arbitrarily long GP’s. [

THE HALES JEWETT THEOREM

Theorem

Let A denote a finite alphabet and let v denote any element which is
not in A. Let S denote the semigroup of words over A, and let S(v) denote
the semigroup of words over AU {v} which contain v. Let W = SU S(v).
For each a € A and w € W, let w(a) € S be defined as the word
obtained from w by replacing all occurrences of v by a. Then given any
finite colouring of S, there exists w € S(v) such that {w(a) : a € A} is

monochrome.
Proof (A. Blass)

Define h, : W — S by h,(w) = w(a). Observe that h, is a homo-
morphism, and hence that h, extends to a continuous homomorphsim
from SW onto 8S. Choose a minimal idempotent p € 58S and a minimal
idempotent ¢ € SW satisfying ¢ < p. For each a € A, hy(q) < ho(p) = p.
So hq(q) = p. Hence, given any P € p, there exists ) € ¢ such that
he(Q) C P. If w € Q, then w(a) € P for every a € A. O

EXTENSION OF VAN DE WAERDEN’S THEOREM (I.Leader, N.Hindman )|

1 0
1 1

Note that if A= | 1 2 , then an AP can be described as the

1 /-1
set of entries of a column vector of the form A (?Z)
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Let S be a commutative semigroup. There is a set of matrices A
over w with the following property: If A € A and C' is a central subset of
S, then C contains all the entries of AX for some column vector X over
S for which AX is defined. A contains all matrices over w, with no row
identically zero, in which the first non-zero entries in two different rows
are equal if they occur in the same column. We also require that ¢S is a
central subset of S whenever c is the first non-zero entry of a row of A.

In particular, A contains all finite matrices over w, with no row
identically zero, in which the first non-zero entry of each row is 1.

So if A € A, in every finite colouring of S, there is a column matrix
X with entries in S such that AX is defined and all the entries of AX are
monochrome. A matrix A with these properties is called image partition
reqular.

A finite matrix A over Q is image partition regular if and only if every
central subset of N contains all the entries of AX for some column matrix
X over Q for which AX is defined. In particular, finite image partition

martrices over Q can be diagonalised, in the sense that, whenever A and

B are two matrices of this kind, then <£ B

> is also image partition

regular.

ANOTHER EXTENSION (V. Bergelson)

Every central subset C of (N, -) contains an arbitrarily long geoarith-
metic progression. l.e., given ¢ € N, there exist a,b,d € N such that
b(a +id)? € C for every i,j € {0,1,2,---,£}.

FURTHER EXTENSIONS (M. Beiglbock, V. Bergelson, N. Hindman,
DS)

If S is a commutative semigroup and F a partition regular family

of finite subsets of S, then for any finite partition of S and any k € N,
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there exists b,7 € S and F € F such that rF U {b(rz)? : x € F,j €
{0,1,2,...,k}} is contained in a cell of the partition.

Let F and G be families of subsets of N such that every multiplica-
tively central subset of N contains a member of F and every additively
central subset of N contains a member of G. If either F or G is a family
of finite sets, then, given any finite colouring of N, there exists B € F
and C' € G such that BUC U B - C is monochrome.

MILLIKEN TAYLOR SYSTEMS

The theory of the partition regularity of finite systems of linear equa-
tions is well understood. Given a finite matrix over a field, the question
of whether it is image partition regular has a computable answer. Infi-
nite systems present far greater difficulty. Milliken Taylor systems are
among the small number of infinite systems known to be image parti-
tion regular. Suppose that (ai,as,...,a,) ia a finite sequence of non-
zero integers, with successive terms distinct. The Milliken Taylor matrix
M = MT{ay,as,...,a,) is an w X w matrix which contains all possible
rows satisfying the following conditions:

(i) There are only a finite number of non-zero entries in each row;

(ii) No row is identically zero;

(iii) The non-zero entries in each row lie in {a1,as,...,a,}, with
each a; occurring and each occurrence of a; preceding each occurrence of
Aj41-

The Milliken Taylor Theorem states that, in any finite colouring of
Z., there is an w x 1 matrix ¥ with integer entries such that all the entries
of M ¥ are monochrome. In fact, if p is any idempotent in SZ and P is
any member of p, the entries of & can be chosen to lie in P.

Note that Hindman’s Theorem is a special case of this theorem, be-

cause Hindman’s Theorem follows from the partition regularity of M (1),
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the finite sums martrix.

Two different MT matrices are incompatible. If A = MT(a) and
B = MT(b) are MT matrices, where @ and b are not rational multiples
of each other, there is a two colouring of Z for which there do not exist
w X 1 matrices & and ¥y over Z for which all the entries of A¥ and By
have the same colour. So infinite image partition regular matrices over
Q cannot be diagonalised.

However, translating these matrices completely changes the situa-
tion. A recent result, due to N. Hindman, I. Leader and DS, shows that

if M = MT({ay,as,...,a,), where a,, = 1, and if H = MT(1), then the
matrix A = (% 7
w X 1 matrix whose entries are all equal to a.) In fact, given any central

) is partition regular. (Here @ denotes the constant

subset C' of N, there exists a column vector X with entries in Z for which
all the entries of AX are in C.

More generally, if Millken Taylor A = MT(a1,az,...a,) and B =
MT(by,bs,...,bx), then (1

5 B) is image partition regular provided
that a,, = bs.

ADDITIVE AND MULTIPLICATIVE IDEMPOTENTS IN SN

THEOREM (DS)

The closure of the smallest ideal of (6N, -) does not meet the smallest
ideal of (SN, +). In fact, it does not meet N* + N*.

THEOREM (DS) The closure of the set of multiplicative idempotents in
BN does not meet the set of additive idempotents.

Lemma 1

Let A and B be o-compact subsets of a compact F-space. Then
AN B # () implies that ANB # 0 or ANB # (.
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Lemma 2

Let uR denote the uniform compactification of R. This is a compact
right topological semigroup in which R is densely embedded, with the
defining property that a bounded continuous real function has a contin-
uous extension to uR if and and only if it is uniformly continuous.

The log function from N to R has a continuous extension to a function
L from BN to puR. L has the following properties:

(i) L(x + y) = L(y) for every x € SN and every y € N*.

(ii) L(zy) = L(x) + L(y) for every z,y € ON.

Remark

For x € BN and n € N, nz will denote lim,_,, ns. Note that this is

not the same as x +x + ... + z, with n terms in the sum.

Proof of Theorem

Let H={), N clﬂN(Q"N).

Let T denote the unit circle.

Observe that H contains all the idempotents in (8N, +) and that
every idempotent in (SN, -) is either in H or in ¢l (2N — 1).

Let C' = cl ;N (E(BN, -))NH. Assume that there exists p € E(SN, +)N
C.
Let D = {x € uR : ¢(z) = 0 for every continuous homomorphism ¢ :
pR — T }. Then L(C) C D and so L(p) € D. Observe that, for every
distinct s 20 in R, (s+ D) N D = (). It follows that, for any n > 1 in N,
L(p) ¢ L(n) + D.

We have p € clgN((N\ {1}) +p). We also have p € cl;N(U{nC : n €
N,n > 1}), because E(BN, ) NH C clyn(U{nC : n € N,;n > 1}).

It follows from Lemma 2 that z +p € nC' for some x € SN and some

n>1inN, orelse n+p € clyN(U{nC :n € N,n > 1}).
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The first possibility is ruled out because it implies that L(p) € L(n)+
D. The second is ruled by the observation that n 4 p ¢ H, while nC' C H
for every n € N. Ul

COROLLARY
There is no idempotent p € (BN, +) such that every member of p

contains all the finite products of an infinite sequence in N.

QUESTION
Is there an idempotent p € (BN, +) such that every member of p

contains three integers of the form z,y, xy?

SOME PROPERTIES OF IDEMPOTENTS IN SN

(1) (N. Hindman, DS) There are 2° idempotents in K (3N)\ K(3N).

(2) (N. Hindman, DS, Y. Zelenyuk) SN contains decreasing <j,
chains of idempotents indexed by ¢. If o is a countable ordinal, SN
contains decreasing chains of idempotents indexed by a.

(3) (N. Hindman, DS) SN contains increasing chains <p chains of
idempotents indexed by ws.

(4) (Y. Zelenyuk) K(SN) contains rectangular semigroups of cardi-
nality 2% (A rectangular semigroup is one in which every element is
idempotent and the identity xyz = xz is satisfied.)

(5) Martin’s Axiom implies that SN contains idempotents which have
a basis consisting of finite sum sets; but this cannot be proved in ZFC.
The existence of an idempotent of this kind implies the existence of an

infinite extremally disconnected Boolean topological group.
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