

Congruences on the product of two full transformation monoids

Wolfram Bentz

University of Hull

Joint work with João Araújo (Universidade Aberta/CEMAT) and Gracinda M.S. Gomes (University of Lisbon/CEMAT)

NBSAN York

January 18, 2017

- For $n \in \mathbb{N}$, let $X_n = \{1, \dots, n\}$.
- Let $\mathcal{T}_n = X_n^{X_n}$ be full transformation monoid, \mathcal{PT}_n the full partial transformation monoid, and \mathcal{I}_n the symmetric monoid, all on the set X_n .
- The congruences of these monoids have been described over 50 years ago by Malcev (\mathcal{T}_n), Sutov (\mathcal{PT}_n), and Liber (\mathcal{I}_n).
- Now consider the product monoids $\mathcal{T}_m \times \mathcal{T}_n$.
- Surprisingly, we could not find a description of $\text{Con}(\mathcal{T}_m \times \mathcal{T}_n)$.
- Our work describes those congruences.

Let Q_n be one of $\mathcal{T}_n, \mathcal{PT}_n, \mathcal{I}_n$.

Given $f \in Q_n$ we denote its domain by $\text{dom}(f)$, its image by $\text{im}(f)$, its kernel by $\ker(f)$ and its rank (the size of the image of f) by $|f|$.

Lemma

Let $f, g \in Q_n$. Then

- ① $f \mathcal{D} g$ iff $|f| = |g|$;
- ② $f \mathcal{L} g$ iff f and g have the same image;
- ③ $f \mathcal{R} g$ iff f and g have the same domain and kernel;
- ④ $f \mathcal{H} g$ iff f and g have the same domain, kernel, and image.

Theorem (after Ganyushkin and Mazorchuk)

A non-universal congruence of Q_n is associated with a pair (k, N) , where $1 \leq k \leq n$, and N is a normal subgroup of S_k ; and it is of the form $\theta(k, N)$ defined as follows: for all $f, g \in Q_n$,

$$f \theta(k, N) g \text{ iff } \begin{cases} f = g \text{ and } |f| > k, \text{ or} \\ |f|, |g| < k, \text{ or} \\ |f| = |g| = k, f \mathcal{H} g \text{ and } f = g \cdot \omega, \text{ where } \omega \in N. \end{cases}$$

We can rephrase the congruence theorem as follows.

Let θ be a congruence on Q_n . Then the \mathcal{D} -classes of Q_n partition into the following three types (up to 2 of which might not be present)

- ① A set $\{D_i, D_{i+1}, \dots, D_n\}$ “at the top”, where $[x]_\theta = \{x\}$.
- ② A set $\{D_j, D_{j-1}, \dots, D_{1/0}\}$ “at the bottom”, where $[x]_\theta = D_j \cup \dots \cup D_{1/0}$.
- ③ A singleton $\{D_k\}$ in between those, where “something different” happens.

In the last case, the blocks of $\theta|_{D_k}$ will consist of either \mathcal{H} -classes, “half”- \mathcal{H} -classes, corresponding to odd and even permutation, or for $k = 4$, of “sixth”- \mathcal{H} -classes, corresponding to cosets of V in S_4 .

- To make this more precise, let $\sigma \in N$, a normal subgroup of S_i .
- For each \mathcal{H} -class fix orderings of its kernel classes and image elements. Let f be in \mathcal{H} -class H .
- Then $f \cdot \sigma$ is the element of H that maps kernel K_j to image $i_{j\sigma}$, where the indices come from the orderings.
- This action will only be used to define congruence classes.
- In this context, normality will guarantee that the initial ordering does not matter.

Definition

A θ -dlock X is a non-empty subset of Q_n such that

- ① X is a union of θ -classes as well as a union of \mathcal{D} -classes;
- ② No proper non-empty subset of X satisfies (??).

Definition

Let X be a θ -dlock. We say that X has *type*

- ε if for all $a, b \in X$ with $a \theta b$ we have $a = b$;
- \mathcal{H} if there exist $a, b \in X$ such that $a \neq b$ and $a \theta b$, and for all $a', b' \in X$ such that $a' \theta b'$ we have $a' \mathcal{H} b'$;
- \mathcal{F} if there exist $a, b \in X$ such that $(a, b) \notin \mathcal{H}$ and $a \theta b$.

The congruence theorem now says that every $\theta \in \text{Con}(Q_n)$ has an optional \mathcal{F} -dlock $D_{0/1} \cup \dots \cup D_k$, an optional \mathcal{H} -block D_{k+1} , sitting on top of the \mathcal{F} -dlock, and consists otherwise of ε -dlocks.

Symmetric groups

Theorem (Folklore)

The normal subgroups N of $S_i \times S_k$ are exactly the ones of the following form:

- ① $N = N_1 \times N_2$, where $N_1 \trianglelefteq S_i$, $N_2 \trianglelefteq S_k$.
- ② $N = \{(a, b) \in S_i \times S_j \mid a \text{ and } b \text{ have the same parity}\}$.

The product $\mathcal{T}_m \times \mathcal{T}_n$

Similar to the group case, the congruence structure of \mathcal{T}_m and \mathcal{T}_n carries over to some degree to their product. The problem is the combinatorial complexity of this correspondence.

Recall that the \mathcal{D} -classes of $\mathcal{T}_m \times \mathcal{T}_n$ are exactly the products of the \mathcal{D} -classes of each factor. We will let $D_{i,j}$ denote that the \mathcal{D} -class of all (f, g) with $|f| = i$ and $|g| = j$, and for a suitable index set P , we set $D_P = \bigcup_{(i,j) \in P} D_{i,j}$.

Definition

A θ -*dlock* X is a non-empty subset of $\mathcal{T}_m \times \mathcal{T}_n$ such that

- ① X is a union of θ -classes as well as a union of \mathcal{D} -classes;
- ② No proper non-empty subset of X satisfies (??).

Definition

Let X be a θ -dlock. We say that X has *first component type*

- ε if for all $(a, b), (c, d) \in X$ with $(a, b) \theta (c, d)$ we have $a = c$;
- \mathcal{H} if there exist $(a, b), (c, d) \in X$ such that $a \neq c$ and $(a, c) \theta (b, d)$, and for all $(a', b'), (c', d') \in X$ such that $(a', b') \theta (c', d')$ we have $a' \mathcal{H} c'$;
- F if there exist $(a, b), (c, d) \in X$ such that $(a, c) \notin \mathcal{H}$ and $(a, c) \theta (b, d)$.

We define the *second component type* of X dually. Finally we say that X has *type* VW for $V, W \in \{\varepsilon, \mathcal{H}, F\}$ if it has first component type V and second component type W .

Now let θ be a congruence of $\mathcal{T}_m \times \mathcal{T}_n$, where $m, n > 1$. Then θ has up to 9 different type of dlocks. We now describe which dlocks can occur in which configurations, and how θ is defined on each dlock, giving a complete description of all congruences.

Lemma

Let $X = D_P = \bigcup_{(i,j) \in P} D_{i,j}$ be a θ -dlock of type **FF**. Then P is a **downward-closed** subset of $(\{1, \dots, m\} \times \{1, \dots, n\}, \leq \times \leq)$, and X is a **single θ -class** that is an ideal of $\mathcal{T}_m \times \mathcal{T}_n$.

Conversely, let θ have an ideal class I , and let

$$P \subseteq \{1, \dots, m\} \times \{1, \dots, n\}$$

be the set of pairs (i, j) for which $D_{i,j} \cap I \neq \emptyset$. Then I is a dlock of Type **FF**.

It follows that θ has at most one dlock of type **FF**.

Dlock of type FF

We can visualize a dlock of type FF as a “landscape”.

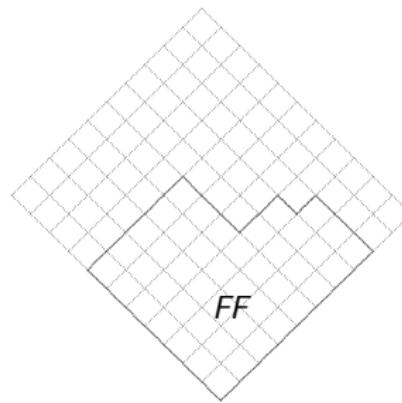


Figure: A possible configuration for a dlock of type FF

Lemma

Let X be a θ -dlock. Then X is of type εF or $\mathcal{H}F$ if and only if there exist $1 \leq i \leq m$, $1 \leq j \leq n$, and $N \trianglelefteq S_i$, such that $X = D_P$ with $P = \{i\} \times \{1, \dots, j\}$, and for every $(f, g) \in X$,

$$[(f, g)]_\theta = \{(f', g') \in X \mid f \mathcal{H} f' \text{ and } f' = f \cdot \sigma \text{ for some } \sigma \in N\}. \quad (1)$$

If X satisfies these requirements, then X is of type $\mathcal{H}F$ exactly when $N \neq \varepsilon_i$.

If X is a dlock of type $\mathcal{H}F$ or εF , we call the group $N \trianglelefteq S_i$ from Lemma ?? the *normal subgroup associated with X* . Clearly, a dual version of Lemma ?? holds for dlocks X of type $F\varepsilon$ or $F\mathcal{H}$.

Dlocks of type \mathcal{HF}

Lemma

Let $X = D_P$ be a dlock of type \mathcal{HF} with $P = \{i\} \times \{1, \dots, j\}$ and associated normal subgroup $N \trianglelefteq S_i$. Then $i \geq 2$, and

$\{1, \dots, i-1\} \times \{1, \dots, j\}$ is contained in the index set of a θ -dlock of type \mathcal{FF} .

Moreover, every congruence θ has at most one dlock of type \mathcal{HF} .

It follows that θ has an \mathcal{HF} -dlock, then it also has an \mathcal{FF} -dlock.

Dlocks of type $\mathcal{H}F$ and $F\mathcal{H}$

We may visualize the statement of Lemma ?? by saying that a θ -dlock of type $\mathcal{H}F$ must lie on the “most eastern slope” of the dlock of type FF .

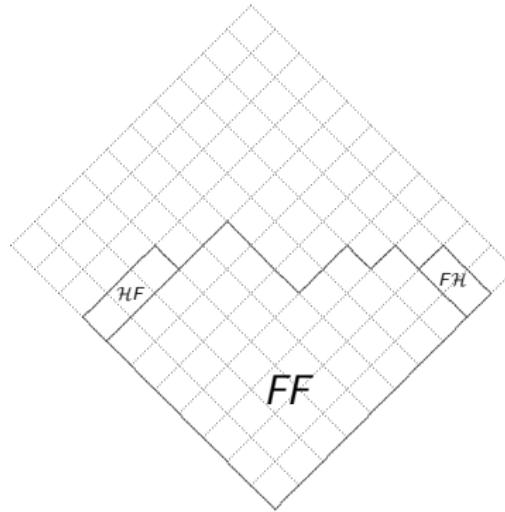


Figure: A possible configuration for three dlocks of type FF , $\mathcal{H}F$ and $F\mathcal{H}$

Dlocks of type εF

Lemma

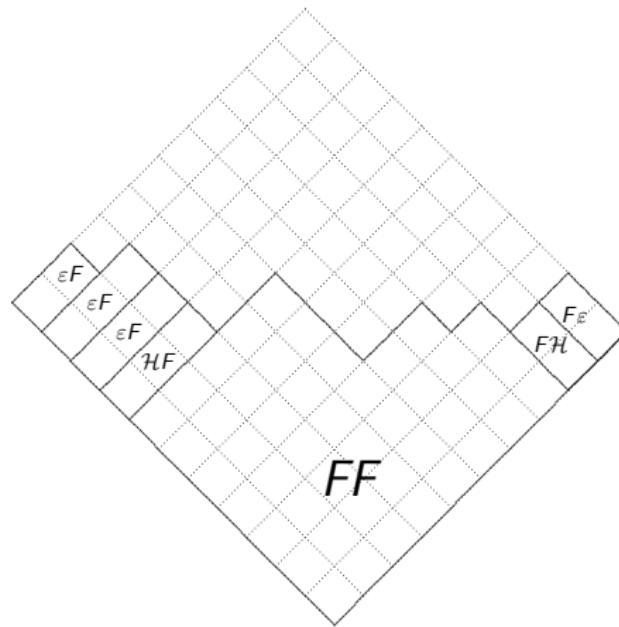
Let $X = D_P$ be a θ -dlock of type εF with $P = \{i\} \times \{1, \dots, j\}$. Then for each $k = 1, \dots, i-1$, the set $\{k\} \times \{1, \dots, j\}$ is contained in the index set of a θ -dlock of type FF , $\mathcal{H}F$, or εF .

Lemma

For a given congruence θ , let J be the set of values (i, j_i) such that $\{i\} \times \{1, \dots, j_i\}$ is the index set of a θ -dlock of type εF . Then $\pi_1(J)$ is a set of consecutive integers (possibly empty), and the values j_i are non-increasing in i .

Dlocks of type εF and $F\varepsilon$

θ -dlocks of type εF , are layered on the top of each other without “overhanging”, with the lowest one either starting at $i = 1$, lying on the top of a dlock of type FF , or lying on the top of a dlock of type $\mathcal{H}F$.



Lemma

Let X be a dlock. Then X is of type \mathcal{HH} , $\varepsilon\mathcal{H}$, $\mathcal{H}\varepsilon$, or $\varepsilon\varepsilon$ if and only if $X = D_{i,j}$ for some i, j and there exists $N \trianglelefteq S_i \times S_j$ such that for every $(f, g) \in X$,

$$[(f, g)]_\theta = \{(f', g') \in D_{i,j} \mid f \mathcal{H} f', g \mathcal{H} g', \\ \text{and } (f', g') = (f \cdot \sigma, g \cdot \tau) \text{ for some } (\sigma, \tau) \in N\}.$$

Moreover, in this situation,

- (a) X is of type $\mathcal{HH} \iff \pi_1(N) \neq \varepsilon_i$ and $\pi_2(N) \neq \varepsilon_j$;
- (b) X is of type $\varepsilon\mathcal{H} \iff N = \varepsilon_i \times N'$ for some $N' \neq \varepsilon_j$;
- (c) X is of type $\mathcal{H}\varepsilon \iff N = N' \times \varepsilon_j$ for some $N' \neq \varepsilon_i$;
- (d) X is of type $\varepsilon\varepsilon \iff N = \varepsilon_i \times \varepsilon_j$.

Dlocks of type \mathcal{HH}

Lemma

Let $X = D_{i,j}$ be a θ -dlock of type \mathcal{HH} with normal subgroup $N \trianglelefteq S_i \times S_j$. Then $i, j \geq 2$, and $D_{i,j-1}$ is contained in either a θ -dlock of type FF , or in a θ -dlock of type \mathcal{HF} with normal subgroup $N' \trianglelefteq S_i$, where $\pi_1(N) \subseteq N'$. Symmetrically, $D_{i-1,j}$ is contained in either a θ -dlock of type FF , or in a θ -dlock of type $F\mathcal{H}$ with normal subgroup $N' \trianglelefteq S_j$, where $\pi_2(N) \subseteq N'$.

Dlocks of type $\mathcal{H}\mathcal{H}$

The result means that the dlocks of type $\mathcal{H}\mathcal{H}$ can only occupy the “valleys” in the landscape formed by the dlocks of FF , $\mathcal{H}F$, and $F\mathcal{H}$.

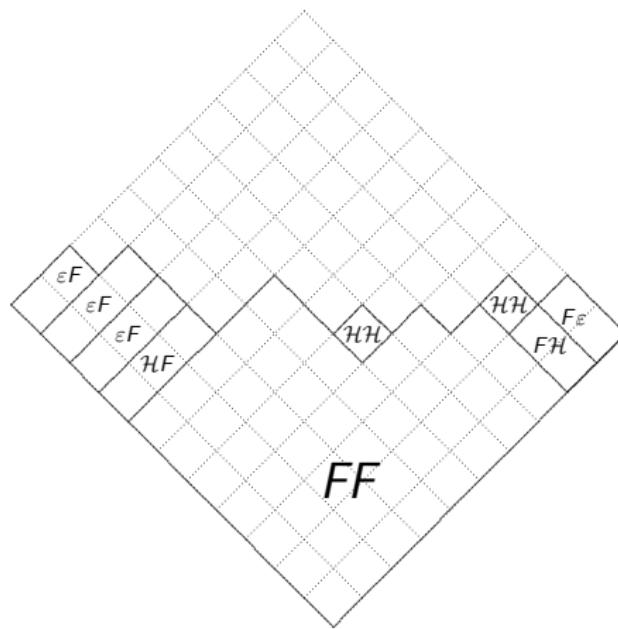


Figure: A possible configuration for dlocks of type FF , $\mathcal{H}F$, $F\mathcal{H}$, εF , $F\varepsilon$, and $\mathcal{H}\mathcal{H}$

Dlocks of type εF

Lemma

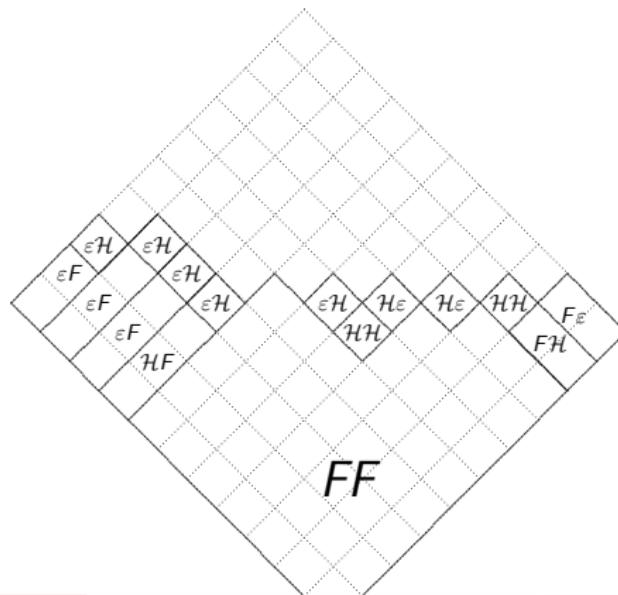
Let $X = D_{i,j}$ be a θ -dlock of type $\varepsilon \mathcal{H}$ with normal subgroup $N = \varepsilon_i \times N' \trianglelefteq S_i \times S_j$. Then $j \geq 2$, and $D_{i,j-1}$ is contained in a dlock of type FF , $\mathcal{H}F$, or εF .

Moreover, if $i > 1$, then $D_{i-1,j}$ is contained in one of the following:

- ① a dlock of type FF ;
- ② a dlock of type $\mathcal{H}F$;
- ③ a dlock of type εF ;
- ④ a dlock of type $F\mathcal{H}$ with normal subgroup $\bar{N} \trianglelefteq S_j$ such that $N' \subseteq \bar{N}$;
- ⑤ a dlock of type $\mathcal{H}\mathcal{H}$ with normal subgroup $\bar{N} \trianglelefteq S_{i-1} \times S_j$ such that $\varepsilon_{i-1} \times N' \subseteq \bar{N}$;
- ⑥ a dlock of type $\varepsilon \mathcal{H}$ with normal subgroup $\bar{N} \trianglelefteq S_{i-1} \times S_j$ such that $\varepsilon_{i-1} \times N' \subseteq \bar{N}$.

Dlocks of type $\varepsilon\mathcal{H}$ and $\mathcal{H}\varepsilon$

The dlocks of type $\varepsilon\mathcal{H}$ can be placed onto the “west-facing” slopes of the landscape made up of the dlocks of type FF , $\mathcal{H}F$, or εF . For any such slope the dlocks of type $\varepsilon\mathcal{H}$, must be “staked on the top of each other”.



The final dlock type $\varepsilon\varepsilon$ can occur in any remaining \mathcal{D} -class.

Theorem

Suppose that we are given a partition \mathcal{P} of $\mathcal{T}_m \times \mathcal{T}_n$ that preserves \mathcal{D} -classes and that to each part B of \mathcal{P} , we associate a type from $\{F, \mathcal{H}, \varepsilon\}^2$ and, if the type of B differs from FF , a group N_B . Suppose further that a *VERY LONG LIST OF CONDITIONS* hold.

On each \mathcal{P} -part B we define a binary relation θ_B as follows:

- (i) If B has type FF let $\theta_B = B^2$;
- (ii) If B has type $\mathcal{H}F$ or εF , let $(f, g)\theta_B(f', g')$ if and only if $f\mathcal{H}f'$ and $f' = f \cdot \sigma$ for some $\sigma \in N_B$;
- (iii) If B has type $F\mathcal{H}$ or $F\varepsilon$, let $(f, g)\theta_B(f', g')$ if and only if $g\mathcal{H}g'$ and $g' = g \cdot \sigma$ for some $\sigma \in N_B$;
- (iv) If B has type $\mathcal{H}\mathcal{H}$, $\varepsilon\mathcal{H}$, $\mathcal{H}\varepsilon$, or $\varepsilon\varepsilon$, let $(f, g)\theta_B(f', g')$ if and only if $f\mathcal{H}f'$, $g\mathcal{H}g'$ and $(f', g') = (f \cdot \sigma, g \cdot \tau)$ for some $(\sigma, \tau) \in N_B$.

Let $\theta = \bigcup_{B \in \mathcal{P}} \theta_B$. Then θ is a congruence on $\mathcal{T}_m \times \mathcal{T}_n$.

Conversely, every congruence on $\mathcal{T}_m \times \mathcal{T}_n$ can be obtained in this way.

- Everything we said also holds (with minute modifications) for $\mathcal{PT}_m \times \mathcal{PT}_n$ and $\mathcal{I}_m \times \mathcal{I}_n$.
- In fact, it also holds for mixed products such as $\mathcal{PT}_3 \times \mathcal{I}_7$.
- We obtained similar results for products of matrix monoids $\mathcal{M}(n, F)$ over a field F .
- These cases include an extra complication, as the ε -type properly corresponds to matrices that are scalar multiples of each other. The multiplier appears as an extra parameter.
- Finally, transferring our results to $\mathcal{T}_m \times \mathcal{T}_n \times \mathcal{T}_k$ is “straightforward”, but complex.

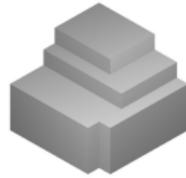


Figure: F, F, F

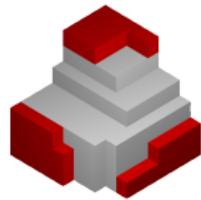


Figure: F, F, \mathcal{H}

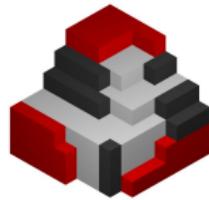


Figure: $F, \mathcal{H}, \mathcal{H}$

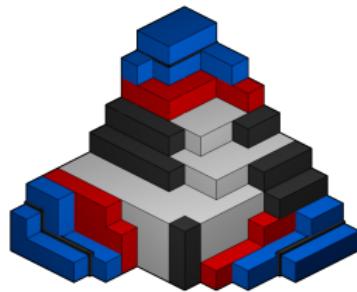


Figure: F, F, ε

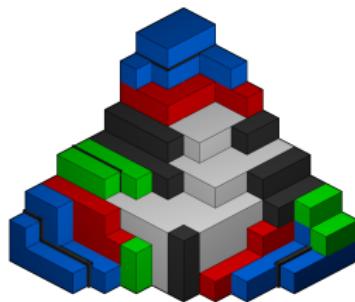
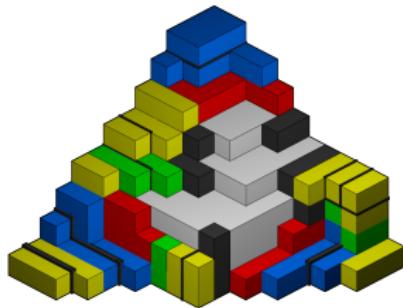


Figure: $F, \mathcal{H}, \varepsilon$

Figure: $F, \varepsilon, \varepsilon$

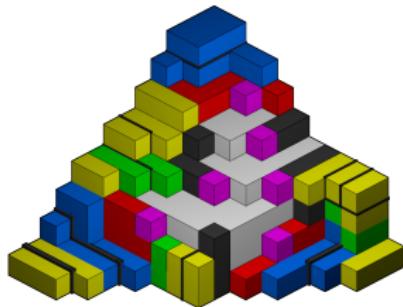


Figure: $\mathcal{H}, \mathcal{H}, \mathcal{H}$

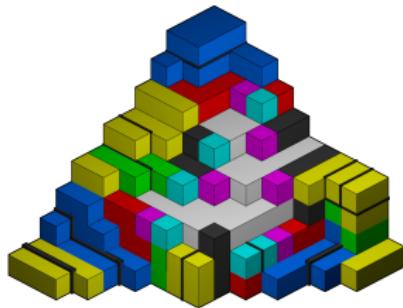


Figure: $\mathcal{H}, \mathcal{H}, \varepsilon$

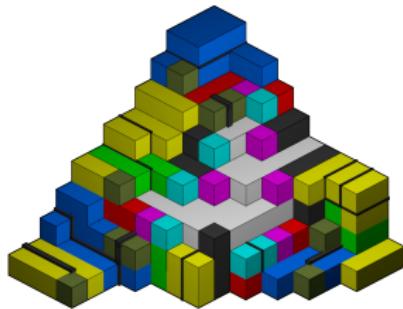


Figure: $\mathcal{H}, \varepsilon, \varepsilon$

Happy New Year!