

The meet-stalactic and meet-taiga monoids

Thomas Aird

University of Manchester

20 June 2024

- Joint work with Duarte Ribeiro (NOVA University Lisbon).
- This work was supported by the London Mathematical Society, the Heilbronn Institute for Mathematical Research, and NOVA University Lisbon

Stalactic monoids

ISt, rSt

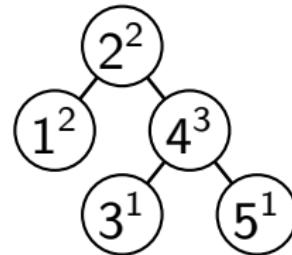
Stalactic tableaux

2	1	3	5	4
2	1	5		
1				

Taiga monoids

ITg, rTg

Binary search trees
with multiplicities



The left and right stalactic and taiga monoids

Let ISt and rSt denote the left and right stalactic monoids, and ITg and rTg denote the left and right taiga monoids.

Definition

For $u, v \in \mathbb{N}^*$,

$$u \equiv_{\text{ISt}} v \iff P_{\text{ISt}}(u) = P_{\text{ISt}}(v),$$

$$u \equiv_{\text{rSt}} v \iff P_{\text{rSt}}(u) = P_{\text{rSt}}(v),$$

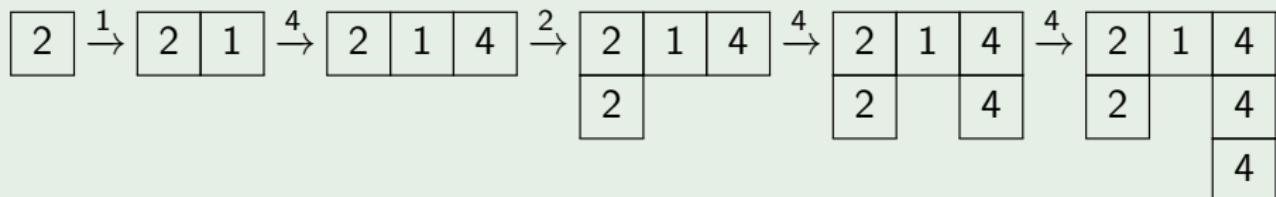
$$u \equiv_{\text{ITg}} v \iff P_{\text{ITg}}(u) = P_{\text{ITg}}(v), \text{ and}$$

$$u \equiv_{\text{rTg}} v \iff P_{\text{rTg}}(u) = P_{\text{rTg}}(v).$$

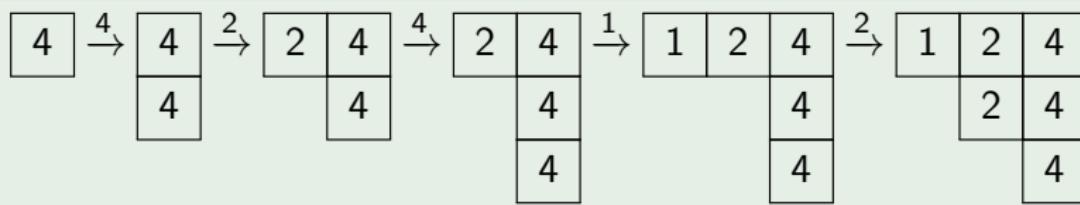
The stalactic monoid

Given $w = 214244 \in \mathbb{N}^*$, we calculate $P_{\text{St}}(w)$ and $P_{\text{rSt}}(w)$.

Example ($P_{\text{St}}(214244)$)



Example ($P_{\text{rSt}}(214244)$)



Patience sorting tableau

Definition

We define increasing [decreasing] patience sorting tableaux by example.
Let,

$$A = \begin{array}{|c|c|c|} \hline 1 & 3 & 4 \\ \hline 2 & & 5 \\ \hline & 6 & \\ \hline \end{array}, \text{ and } B = \begin{array}{|c|c|c|} \hline 2 & 5 & 6 \\ \hline & 1 & 4 \\ \hline & & 3 \\ \hline \end{array}.$$

- ① A and B increase left-to-right in the first row.
- ② A increases top-to-bottom in each column, and
- ③ B decreases top-to-bottom in each column.

So A is an *increasing* patience sorting tableau and B is a *decreasing* patience sorting tableau.

Q-symbols for stalactic

Let $w = 214244$.

Example

$$P_{\text{St}}(w) = \begin{array}{|c|c|c|} \hline 2 & 1 & 4 \\ \hline 2 & & 4 \\ \hline & 4 & \\ \hline \end{array} \text{ and } Q_{\text{St}}(w) = \begin{array}{|c|c|c|} \hline 1 & 2 & 3 \\ \hline 4 & & 5 \\ \hline & 6 & \\ \hline \end{array}.$$

Example

$$P_{\text{rSt}}(w) = \begin{array}{|c|c|c|} \hline 1 & 2 & 4 \\ \hline 2 & 4 & \\ \hline & 4 & \\ \hline \end{array} \text{ and } Q_{\text{rSt}}(w) = \begin{array}{|c|c|c|} \hline 2 & 4 & 6 \\ \hline 1 & 5 & \\ \hline & 3 & \\ \hline \end{array}.$$

Theorem

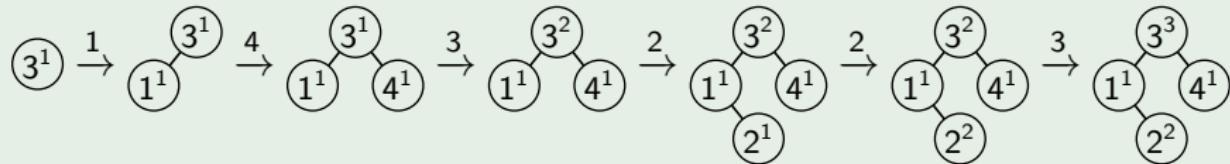
The map $w \mapsto (P_{\text{St}}(w), Q_{\text{St}}(w))$ [$w \mapsto (P_{\text{rSt}}(w), Q_{\text{rSt}}(w))$] is a bijection between the elements of \mathbb{N}^ and the set formed by the pairs (T, S) where*

- ① *T is a stalactic tableau;*
- ② *S is an increasing [decreasing] patience-sorting tableau;*
- ③ *T and S have the same shape.*

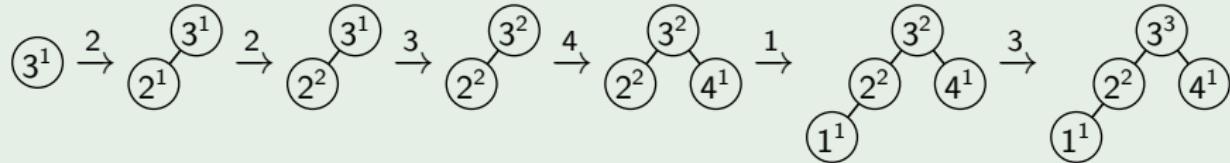
The taiga monoid

Given $w = 3143223 \in \mathbb{N}^*$, we calculate $P_{\text{ITg}}(w)$ and $P_{\text{rTg}}(w)$.

Example ($P_{\text{ITg}}(3143223)$)



Example ($P_{\text{rTg}}(3143223)$)

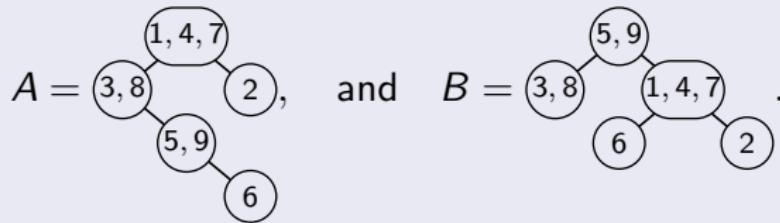


We call, $P_{\text{ITg}}(w)$ and $P_{\text{rTg}}(w)$, *Binary search trees with multiplicities* (BSTM).

Binary trees over sets

Definition

We define an *increasing [decreasing] binary tree over sets* (BTS) by example. Let,



- ① A and B contain exactly the interval $\{1, \dots, m\}$ for some $m \in \mathbb{N}$,
- ② replacing each node in A with its minimum obtains an increasing tree,
- ③ replacing each node in B with its maximum obtains a decreasing tree.

So A is an increasing BTS and B is a decreasing BTS.

Q-symbols for stalactic

Let $w = 3143223$.

Example

$$P_{\text{ITg}}(w) = \begin{array}{c} 3^3 \\ \circlearrowleft \quad \circlearrowright \\ 1^1 \quad 4^1 \\ \circlearrowleft \quad \circlearrowright \\ 2^2 \end{array} \text{ and } Q_{\text{ITg}}(w) = \begin{array}{c} 1, 4, 7 \\ \circlearrowleft \quad \circlearrowright \\ 2 \quad 3 \\ \circlearrowleft \quad \circlearrowright \\ 5, 6 \end{array}$$

Example

$$P_{\text{rTg}}(w) = \begin{array}{c} 3^3 \\ \circlearrowleft \quad \circlearrowright \\ 2^2 \quad 4^1 \\ \circlearrowleft \quad \circlearrowright \\ 1^1 \end{array} \text{ and } Q_{\text{rTg}}(w) = \begin{array}{c} 1, 4, 7 \\ \circlearrowleft \quad \circlearrowright \\ 5, 6 \quad 3 \\ \circlearrowleft \quad \circlearrowright \\ 2 \end{array}$$

Theorem

The map $w \mapsto (P_{\text{ITg}}(w), Q_{\text{ITg}}(w))$ [$w \mapsto (P_{\text{rTg}}(w), Q_{\text{rTg}}(w))$] a bijection between the elements of \mathbb{N}^ and the set formed by the pairs (T, S) where*

- ① *T is a BSTM;*
- ② *S is an increasing [decreasing] BTS such that the union of the sets labelling S is the interval $[m]$, where m is the sum of the multiplicities of T ;*
- ③ *T and S have the same underlying binary tree shape;*
- ④ *the multiplicity of the i -th node of T is the cardinality of the set labelling the i -th node of S .*

The meet-stalactic and meet-taiga monoid

Let mSt and mTg denote the meet-stalactic and meet taiga monoid.

Definition

Let $P_{mSt}(w) = (P_{lSt}(w), P_{rSt}(w))$, and $P_{mTg}(w) = (P_{lTg}(w), P_{rTg}(w))$. Then, for $u, v \in \mathbb{N}^*$,

$$u \equiv_{mSt} v \iff P_{mSt}(u) = P_{mSt}(v), \text{ and}$$

$$u \equiv_{mTg} v \iff P_{mTg}(u) = P_{mTg}(v).$$

Example

We can equally define a Q -symbol for mSt by

$$Q_{\text{mSt}}(w) = (Q_{\text{ISSt}}(w), Q_{\text{rSt}}(w))$$

Example

$$P_{\text{mSt}}(214244) = \left(\begin{array}{|c|c|c|} \hline 2 & 1 & 4 \\ \hline 2 & & 4 \\ \hline & 4 & \\ \hline \end{array}, \begin{array}{|c|c|c|} \hline 1 & 2 & 4 \\ \hline & 2 & 4 \\ \hline & & 4 \\ \hline \end{array} \right) \text{ and}$$

$$Q_{\text{mSt}}(214244) = \left(\begin{array}{|c|c|c|} \hline 1 & 2 & 3 \\ \hline 4 & & 5 \\ \hline & 6 & \\ \hline \end{array}, \begin{array}{|c|c|c|} \hline 2 & 4 & 6 \\ \hline & 1 & 5 \\ \hline & & 3 \\ \hline \end{array} \right)$$

Twin stalactic tableaux

Let $\text{cont}(T)$ be the multi-set containing every label in T . We say a column is *simple* if it only contains one block.

Definition

Let T_L, T_R be stalactic tableaux. We say (T_L, T_R) are a *pair of twin stalactic tableaux* if

- ① $\text{cont}(T_L) = \text{cont}(T_R)$, and
- ② for each simple column labelled c and any column labelled d , if c is left of d in T_L , then c is left of d in T_R .

Proposition

For any $w \in \mathbb{N}^*$, the meet-stalactic P -symbol $(P_{\text{St}}(w), P_{\text{rSt}}(w))$ of w is a pair of twin stalactic tableaux.

Twin patience-sorting tableaux

Definition

Let (S_L, S_R) be a pair of (respectively) increasing and decreasing patience-sorting tableaux. We say (S_L, S_R) are a *pair of twin patience-sorting tableaux* if

- ① there exists a content preserving bijection ϕ between the columns of S_L and the columns of S_R ;
- ② for each simple column c and any column d in S_L , if c appears to the left of d in S_L then $\phi(c)$ appears to the left of $\phi(d)$ in S_R .

Proposition

For any $w \in \mathbb{N}^*$, the meet-stalactic Q -symbol $(Q_{\text{St}}(w), Q_{\text{rSt}}(w))$ of w is a pair of twin patience-sorting tableaux.

Theorem

The map $w \mapsto (P_{\text{mSt}}(w), Q_{\text{mSt}}(w))$ is a bijection between the elements of \mathbb{N}^* and the set formed by the pairs $((T_L, T_R), (S_L, S_R))$ where

- ① (T_L, T_R) is a pair of twin stalactic tableaux;
- ② (S_L, S_R) is a pair of twin patience-sorting tableaux with bijection ϕ ;
- ③ (T_L, T_R) and (S_L, S_R) have the same shape;
- ④ For each column c in S_L , the column in T_L in the same position as c and the column in T_R in the same position as $\phi(c)$, have the same content.

Meet-taiga example

We can equally define a Q -symbol for mTg by

$$Q_{mTg}(w) = (P_{lTg}(w), P_{rTg}(w))$$

Example

$$P_{mTg}(3143223) = \left(\begin{array}{c} \text{Diagram 1: } \begin{array}{c} 3^3 \\ \diagup \quad \diagdown \\ 1^1 \quad 4^1 \\ \diagdown \quad \diagup \\ 2^2 \end{array}, \quad \text{Diagram 2: } \begin{array}{c} 3^3 \\ \diagup \quad \diagdown \\ 1^1 \quad 4^1 \\ \diagdown \quad \diagup \\ 2^2 \end{array} \end{array} \right) \text{ and}$$
$$Q_{mTg}(3143223) = \left(\begin{array}{c} \text{Diagram 1: } \begin{array}{c} 1, 4, 7 \\ \diagup \quad \diagdown \\ 2 \quad 3 \\ \diagdown \quad \diagup \\ 5, 6 \end{array}, \quad \text{Diagram 2: } \begin{array}{c} 1, 4, 7 \\ \diagup \quad \diagdown \\ 5, 6 \quad 3 \\ \diagdown \quad \diagup \\ 2 \end{array} \end{array} \right)$$

Twin binary search trees with multiplicity

Definition

Let T_L, T_R be BTSMs. We say (T_L, T_R) is a *pair of twin binary trees with multiplicities* (pair of twin BTMs), if for all i ,

- ① $\text{cont}(T_L) = \text{cont}(T_R)$.
- ② if the i -th node of T_L has multiplicity 1 and has a left (resp. right) child then the i -th node of T_R does not have a left (resp. right) child.

Proposition

For any $w \in \mathbb{N}^*$, the meet-taiga P -symbol $(P_{\text{ITg}}(w), P_{\text{rTg}}(w))$ of w is a pair of twin BTMs.

Twin binary trees over sets

Definition

Let (S_L, S_R) be a pair of (respectively) increasing and decreasing BTSSs. We say (S_L, S_R) are a *pair of twin binary trees over sets* (pair of twin BTSSs) if, for all i ,

- ① the i -th node of S_L has the same label as the i -th node of S_R ;
- ② if the i -th node of S_L is labelled by a set of cardinality 1 and has a left (resp. right) child, then the i -th node of S_R does not have a left (resp. right) child.

Proposition

For any $w \in \mathbb{N}^*$, the meet-taiga Q -symbol $(Q_{\text{LTg}}(w), Q_{\text{RTg}}(w))$ of w is a pair of twin BTSSs.

Theorem

The map $w \mapsto (P_{\text{mTg}}(w), Q_{\text{mTg}}(w))$ is a bijection between the elements of \mathbb{N}^ and the set formed by the pairs $((T_L, T_R), (S_L, S_R))$ where*

- ① *(T_L, T_R) is a pair of twin BSTMs;*
- ② *(S_L, S_R) is a pair of twin BTSs;*
- ③ *(T_L, T_R) and (S_L, S_R) have the same underlying pair of binary trees shape;*
- ④ *the multiplicity of the i -th node of T_L (resp. T_R) is the cardinality of the set labelling the i -th node of S_L (resp. S_R).*

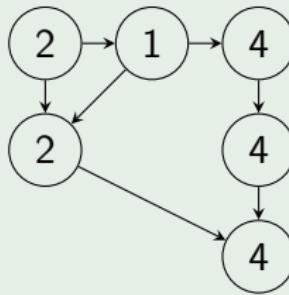
Size of stalactic classes

Example

Consider the meet-stalactic tableau,

$$T = P_{\text{mSt}}(214244) = \left(\begin{array}{|c|c|c|} \hline 2 & 1 & 4 \\ \hline 2 & & 4 \\ \hline & 4 & \\ \hline \end{array}, \begin{array}{|c|c|c|} \hline 1 & 2 & 4 \\ \hline & 2 & 4 \\ \hline & & 4 \\ \hline \end{array} \right)$$

Then, we define the following poset: $\psi_{\text{mSt}}(T) =$



Proposition

Let $w \in \mathbb{N}^*$. Then, each word in $[w]_{\text{mSt}}$ is in bijection with a linear extension of $\psi_{\text{mSt}}(P_{\text{mSt}}(w))$.

Proposition

There exists an algorithm to compute the number of linear extensions of $\psi_{\text{mSt}}(T)$ has time complexity $\mathcal{O}(n^{2k-2}k!)$ where n is the number of nodes and k is the size of the support.

Theorem

Let $k \geq 2$, $V = (v_1, \dots, v_k) \in \mathbb{N}_0^k$, $B = (b_1, \dots, b_{k-1}) \in \mathbb{N}_0^{k-1}$ and σ be a permutation of $[k]$. Then, when $\sigma_1 < \sigma_2$, $\mathcal{L}(G[V; B; \sigma])$ is equal to

$$\sum_{\substack{M \in \mathbb{N}_0^{\sigma_2 - \sigma_1} \\ 0 \leq \|M\|_1 \leq v_{\sigma_1}}} \mathcal{L}_M \cdot \binom{v_{\sigma_2} - 1 + v_{\sigma_1} - \|M\|_1}{v_{\sigma_1} - \|M\|_1} \prod_{i=1}^{\sigma_2 - \sigma_1} \binom{b_{\sigma_1 - 1 + i} + m_i}{m_i},$$

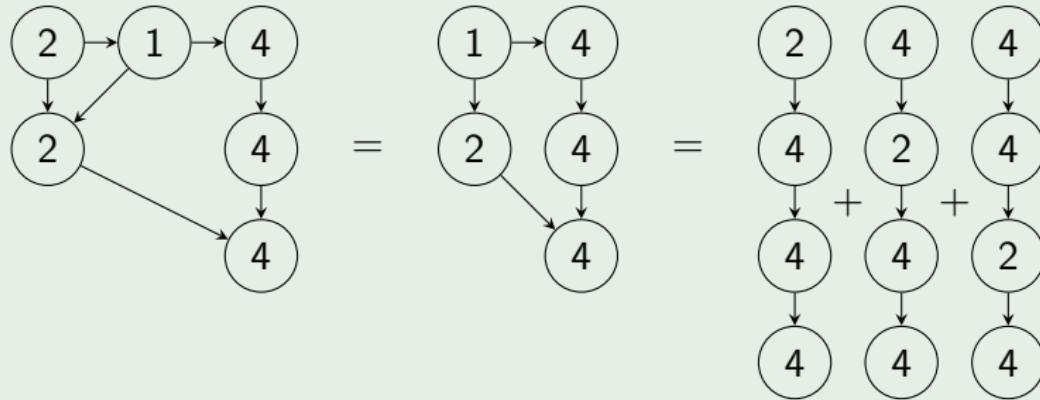
where $\mathcal{L}_M = 1$ if $k = 2$ and $\mathcal{L}_M = \mathcal{L}(G[f_{k, \sigma_1, \sigma_2, M}(V, B); \text{Std}(\sigma_2 \sigma_3 \cdots \sigma_k)])$ otherwise, and, when $\sigma_2 < \sigma_1$, is equal to

$$\sum_{\substack{M \in \mathbb{N}_0^{\sigma_1 - \sigma_2} \\ 0 \leq \|M\|_1 \leq v_{\sigma_2} - 1}} \mathcal{L}'_M \cdot \binom{v_{\sigma_1} + v_{\sigma_2} - 1 - \|M\|_1}{v_{\sigma_2} - 1 - \|M\|_1} \prod_{i=1}^{\sigma_1 - \sigma_2} \binom{b_{\sigma_2 - 1 + i} + m_i}{m_i},$$

where $\mathcal{L}'_M = 1$ if $k = 2$ and $\mathcal{L}'_M = \mathcal{L}(G[f_{k, \sigma_2, \sigma_1, M}(V, B); \text{Std}(\sigma_1 \sigma_3 \cdots \sigma_k)])$ otherwise.

The Algorithm

Example



So, $[214244]_{\text{mSt}} = 3$.

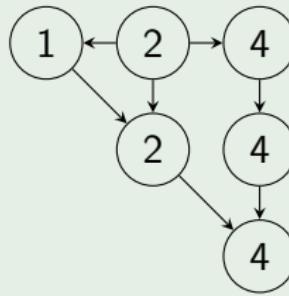
Size of taiga classes

Example

Consider the meet-taiga tableau,

$$T = P_{\text{mTg}}(214244) = \left(\begin{array}{c} \text{1}^1 \text{2}^2 \text{4}^3, \\ \text{2}^2 \text{4}^3 \end{array} \right)$$

Then, we define the following poset: $\psi_{\text{mTg}}(T) =$



Size of taiga classes

Proposition

Let $w \in \mathbb{N}^*$. Then, each word in $[w]_{\text{mTg}}$ is in bijection with a linear extension of $\psi_{\text{mTg}}(P_{\text{mTg}}(w))$.

Theorem

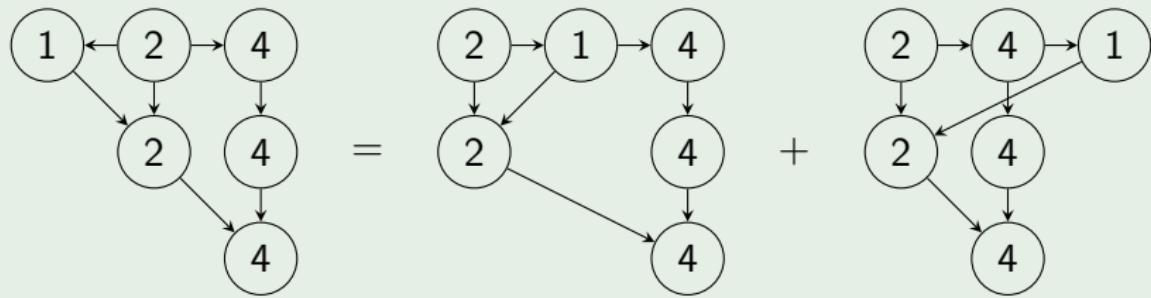
Let $Q_{\text{mTg}}(w) = T = (T_L, T_R)$. Then,

$$\mathcal{L}(\psi_{\text{mTg}}(T)) = \sum_L \sum_R \mathcal{L}(\text{mSt}(P_{\text{mSt}}(w_{L,R})))$$

where the first sum is over all linear extensions L of $\Delta(T_L)$ and the second sum is over all linear extensions R of $\nabla(T_R, p_L)$ where $a < x$ in p_L if and only if a is simple in (T_L, T_R) and $a < x$ in L .

The Algorithm

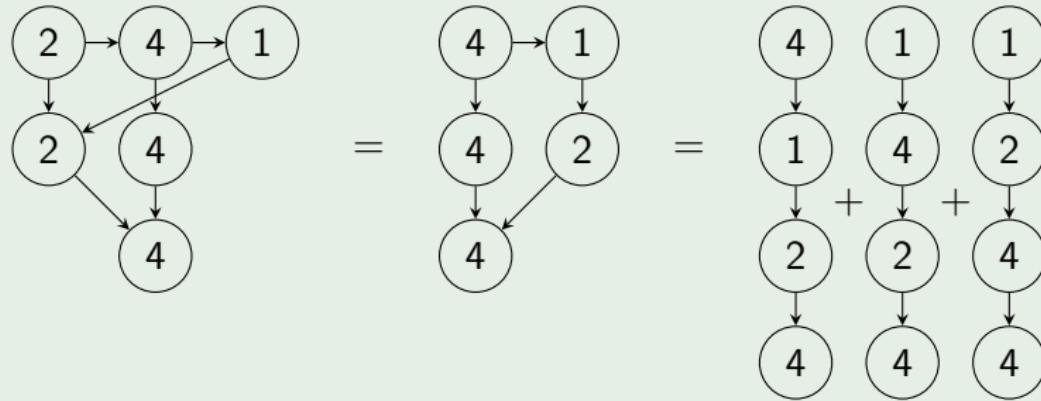
Example



$$\text{So, } [214244]_{mTg} = [214244]_{mSt} + [241244]_{mSt}.$$

The Algorithm

Example



So, $[214244]_{mTg} = 3 + 3 = 6$.

Proposition

There exists an algorithm to compute the number of linear extensions of $\psi_{mTg}(T)$ has time complexity $\mathcal{O}(n^{2k-2}(k!)^3)$ where n is the number of nodes and k is the size of the support.