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Motivation

Plactic monoid
[Lascoux, Schützenberger ’81]

▶ Young tableaux, Schensted
insertion

1 1 1 1
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3

▶ Knuth relations

acb ≡ cab, a ≤ b < c

bac ≡ bca, a < b ≤ c

▶ Crystals
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Hypoplactic monoid
[Krob, Thibon ’97], [Novelli ’00]

▶ Quasi-ribbon tableaux,
Krob–Thibon insertion

1 1

2 2 2

3 3

▶ Knuth + quartic relations

cadb ≡ acbd , a ≤ b < c ≤ d

bdac ≡ dbca, a < b ≤ c < d

▶ Quasi-crystals
121

131
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232

211

311

312

322



Crystals

Definition

A crystal of type An−1 is a non-empty set C together with maps

ẽi , f̃i : C −→ C ⊔ {⊥} (Kashiwara operators)

ε̃i , φ̃i : C −→ Z ⊔ {−∞} (length functions)

wt : C −→ Zn
(weight function)

for i ∈ I := {1, . . . , n − 1}, satisfying the following:

C1. For any x , y ∈ C, ẽi (x) = y iff x = f̃i (y), and in that case

wt(y) = wt(x) + αi , ε̃i (y) = ε̃i (x)− 1, φ̃i (y) = φ̃i (x) + 1

C2. φ̃i (x) = ε̃i (x) + ⟨wt(x), αi ⟩
C3. ε̃i (x) = −∞⇒ ẽi (x) = f̃i (x) = ⊥.
where αi = (0, . . . , 0, 1,−1, 0, . . . , 0).

(This definition is generalized for other Cartan types)



Crystals

▶ The crystal graph associated to a crystal C is the directed weighted

graph where y
i−→ x iff ẽi (x) = y iff f̃i (y) = x .
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Crystals
▶ A crystal is seminormal if

ε̃i (x) = max{k : ẽi (x)
k ̸= ⊥}, φ̃i (x) = max{k : f̃i (x)

k ̸= ⊥},
for all i ∈ I and x ∈ C. In particular, ε̃i (x), φ̃i (x) ≥ 0.

x

ε̃i (x)

φ̃i (x)

▶ To compute f̃i (w) and ẽi (w) on a word w ∈ {1 < · · · < n}∗:
▶ consider the subword with only symbols i and i + 1, and cancel all

pairs (i + 1)i (i-inversions), until there are no pairs left.
▶ ẽi changes the leftmost i + 1 to i , if possible; if not, it is ⊥.
▶ f̃i changes the rightmost i to i + 1, if possible; if not, it is ⊥.

1221112

1221112

1221112

1221112

⊥ ẽ1←− 1221111
ẽ1←− 1221112

f̃1−→ 1221122
f̃1−→ 2221122

f̃1−→ ⊥

⊥ ẽ1←− 1221111
ẽ1←− 1221112

f̃1−→ 1221122
f̃1−→ 2221122

f̃1−→ ⊥

⊥ ẽ1←− 1221111
ẽ1←− 1221112

f̃1−→ 1221122
f̃1−→ 2221122

f̃1−→ ⊥

⊥ ẽ1←− 1221111
ẽ1←− 1221112

f̃1−→ 1221122
f̃1−→ 2221122

f̃1−→ ⊥



Stembridge crystals

▶ A Stembridge crystal is a seminormal crystal of simply-laced type
that satisfies some local axioms [Stembridge ’03]. These are the
crystal graphs that correspond to representations of Lie algebras.

▶ The connected components have nice properties:
▶ Unique highest weight element (source vertex), from which all

vertices can be reached.
▶ All components whose highest weight elements have the same weight

are isomorphic.
▶ In type A, the character of a connected component is a Schur

function sλ.



Stembridge crystals
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Stembridge crystals
Local axioms

S1. If ẽi (x) = y , then ε̃j(y) is equal to ε̃j(x) or ε̃j(x) + 1 (the second case

is possible only if |i − j | = 1).

• • • • • • •

• • • • • •

or
• • • • • •

• • • • • • •

for |i − j| = 1

• • • • • •

• • • • • • f̃j

f̃i

for |i − j| > 1



Stembridge crystals
Local axioms

S2. If ẽi (x) = y and
ε̃j(y) = ε̃j(x) > 0 then

ẽi ẽj(x) = ẽj ẽi (x) ̸= ⊥

•

• •

•
0

and φ̃i (ẽj(x)) = φ̃i (x).

(and dual axioms for f̃i , f̃j)

S3. If ẽi (x) = y and ẽj(x) = z , and
ε̃i (z) = ε̃i (x) + 1 and
ε̃j(y) = ε̃j(x) + 1 then

ẽi ẽj
2ẽi (x) = ẽj ẽi

2ẽj(x) ̸= ⊥.

•

• •

• •

• •

•
1 1
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Hypoplactic monoid
[Krob, Thibon ’97], [Novelli ’00]
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Quasi-crystals

▶ First introduced by Cain and M. (2017), providing another
characterization of the hypoplactic monoid of type A.

▶ Cain, Guilherme and M. (2023) provided a definition of abstract
quasi-crystals for other Cartan types.

▶ For type A, each connected component has a unique highest weight
element, is isomorphic to a quasi-crystal of quasi-ribbon tableaux,
and its character is a fundamental quasisymmetric function Fα.

▶ We have sλ =
∑

T∈SYT(λ)

FDesComp(T ).

▶ Using this decomposition, Maas-Gariépy (2023) independently
introduced quasi-crystals, as subgraphs of a connected component of
a crystal graph.



Quasi-crystals

Definition (Cain, Guilherme, M. ’23)

A quasi-crystal of type An−1 is a non-empty set Q together with maps

ëi , f̈i : Q −→ Q⊔ {⊥} (quasi-Kashiwara operators)

ε̈i , φ̈i : Q −→ Z ⊔ {−∞,+∞}
wt : Q −→ Zn

for i ∈ {1, . . . , n − 1}, satisfying the same axioms of crystals and
additionally:

ε̈i (x) = +∞ ⇒ ëi (x) = f̈i (x) = ⊥.

▶ A quasi-crystal is seminormal if, for all i ∈ I and x ∈ Q,

ε̈i (x) = max{k : ëi (x)
k ̸= ⊥}, φ̈i (x) = max{k : f̈i (x)

k ̸= ⊥}

whenever ε̈i (x) ̸= +∞.



Quasi-crystals
To compute f̈i (w) and ëi (w) on a word w ∈ {1 < · · · < n}∗:
▶ If w has an i-inversion, f̈i (w) = ëi (w) = ⊥.
▶ Otherwise, f̈i (w) = f̃i (w) and ëi (w) = ẽi (w).

f̈1(13121) =

f̈1(13112) =

f̈1(13121) =

f̈1(13112) =

f̈1(13121) =

f̈1(13112) =

f̈1(13121) = ⊥
f̈1(13112) =

f̈1(13121) = ⊥
f̈1(13112) =

f̈1(13121) = ⊥
f̈1(13112) =

f̈1(13121) = ⊥
f̈1(13112) = 13122



Quasi-crystals

The quasi-crystal graph associated to a quasi-crystal Q is the directed
weighted graph where:

▶ y
i−→ x iff ëi (x) = y .

▶ x has an i-labelled loop iff ε̈i (x) = +∞ iff φ̈i (x) = +∞.
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Local characterization of quasi-crystals
Local quasi-crystal axioms

LQC1. If ëi (x) = y , then:
▶ For |i − j | > 1, ε̈j(x) = ε̈j(y).

f̈i

f̈j

• • • •
x

• •

• • • •
y

• •

or

x

y
•

•

▶ For j = i + 1,

ε̈i+1(x) ̸= ε̈i+1(y) ⇔
(
ε̈i+1(x) = +∞∧ ε̈i (y) = 0

)
⇒ ε̈i+1(y) > 0.

• • • •
x

• • •

• • • •
y

• •

or or

...
y •

•
x

y
•

•
x

•. . .

▶ For j = i − 1,

φ̈i−1(x) ̸= φ̈i−1(y) ⇔
(
φ̈i−1(y) = +∞∧ φ̈i (x) = 0

)
⇒ φ̈i−1(x) > 0.

• • • •
x

• •

• • • • •
y

• •

or or

y
•

•x ...

y
•

•
x

• . . .



Local characterization of quasi-crystals
Local quasi-crystal axioms

LQC2. ε̈i (x) = 0 iff φ̈i+1(x) = 0, for i ∈ {1, . . . , n − 2}.

• • • • . . .i i i

•

i+1

i+1

. . . • • • •
i+1 i+1 i+1

•

i

i

LQC3. If both ëi (x) and ëj(x) are defined, for i ̸= j , then
ëi ëj(x) = ëj ëi (x) ̸= ⊥ (and dual axiom for f̈i , f̈j .)

•

ëi ëj (x) = ëj ëi (x)

•ëj (x) • ëi (x)

•
x



Local characterization of quasi-crystals

Theorem (Cain, M., Rodrigues, Rodrigues ’23)

If Q is a quasi-crystal of type A (not necessarily seminormal) satisfying
the local axioms, and such that ε̈i (x) ̸= +∞ and φ̈i (x) ̸= +∞, for all
i ∈ I , x ∈ Q, then Q is a weak Stembridge crystal (i.e. not necessarily
seminormal).

Theorem (Cain, M., Rodrigues, Rodrigues ’23)

Let Q be a connected component of a seminormal quasi-crystal graph of
type A, weighted in Zn

≥0, satisfying the local axioms. Then, Q has a
unique highest weight element, whose weight is a composition.

Theorem (Cain, M., Rodrigues, Rodrigues ’23)

Let Q and Q′ be connected components of seminormal quasi-crystal
graphs of type A satisfying the local axioms, with highest weight
elements u and v. If wt(u) = wt(v), then there exists a
weight-preserving isomorphism between Q and Q′.



Quasi-tensor product of quasi-crystals

Cain, Guilherme, and M. (2023) introduced a notion of quasi-tensor
product of seminormal quasi-crystals, denoted Q⊗̈Q′, which has Q×Q′

as underlying set and maps:

▶ wt(x ⊗̈ x ′) = wt(x) + wt(x ′).

▶ If φ̈i (x) > 0 and ε̈i (x
′) > 0, ëi (x ⊗̈ x ′) = f̈i (x ⊗̈ x ′) = ⊥ and

ε̈i (x ⊗̈ x ′) = φ̈i (x ⊗̈ x ′) = +∞, otherwise,

ëi (x ⊗̈ x ′) =

{
ëi (x) ⊗̈ x ′ if φ̈i (x) ≥ ε̈i (x

′)

x ⊗̈ ëi (x
′) if φ̈i (x) < ε̈i (x

′)

f̈i (x ⊗̈ x ′) =

{
f̈i (x) ⊗̈ x ′ if φ̈i (x) > ε̈i (x

′)

x ⊗̈ f̈i (x
′) if φ̈i (x) ≤ ε̈i (x

′)

ε̈i (x) = max{ε̈i (x), ε̈i (x ′)− ⟨wt(x), αi ⟩}
φ̈i (x) = max{φ̈i (x) + ⟨wt(x ′), αi ⟩, φ̈i (x

′)}

(With this convention x ⊗̈ y is identified with the word yx .)



Quasi-tensor product of quasi-crystals

▶ Bn is the standard crystal of type An−1:

1 2 3 · · · n
1 2 3 n − 1

▶ Similarly to the case of the plactic monoid, each component of the
hypoplactic monoid is isomorphic to some B ⊗̈ k

n .

1 ⊗̈ 2

1 ⊗̈ 3

2 ⊗̈ 3

A connected component of B3 ⊗̈ B3

1⊗ 2

1⊗ 3

2⊗ 3

A connected component of B3 ⊗ B3



Quasi-tensor product of quasi-crystals
Theorem (Cain, M., Rodrigues, Rodrigues ’23)

Let Q and Q′ be seminormal quasi-crystal graphs satisfying the local
axioms. Then, Q⊗̈Q′ is a seminormal quasi-crystal that satisfies the
same axioms.

▶ The standard crystal Bn satisfies
the local axioms.

▶ A connected component of a
quasi-crystal of words, being
isomorphic to some B ⊗̈ k

n , satisfies
the local axioms.

▶ As a consequence, every
connected component of a
seminormal quasi-crystal
satisfying the local axioms is
isomorphic a quasi-crystal of
quasi-ribbon tableaux.
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From crystals to quasi-crystals
Let (C, f̃i , ẽi , ε̃i , φ̃i ) be a connected component of a
Stembridge crystal, weighted in Zn

≥0, and define

(Q, f̈i , ëi , ε̈i , φ̈i ) to have the same underlying set as
C and:

▶ Place a i-labelled loop on x if
ε̃i (x) < wti+1(x), for all i ∈ I , x ∈ C
(equivalently, if φ̃i (x) < wti (x)).

▶ Then, remove i-labelled edges that have
i-labelled loops on both ends.

Theorem (Cain, M., Rodrigues, Rodrigues ’23)

Q is a seminormal quasi-crystal that satisfies the
local axioms.

Corollary (Cain, M., Rodrigues, Rodrigues ’23)

If C has highest weight λ, the number of connected
components of Q is given by the number of
standard Young tableaux of shape λ.
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121 wt = (2, 1, 0)

ε̃1 = 0

121 wt = (2, 1, 0)

ε̃2 = 0

221 wt = (1, 2, 0)

ε̃1 = 1, ε̃2 = 0

231 wt = (1, 1, 1)

ε̃1 = 0, ε̃2 = 1

331 wt = (1, 0, 2)

ε̃1 = 0, ε̃2 = 2

131wt = (2, 0, 1)

ε̃1 = 0, ε̃2 = 1

132

wt = (1, 1, 1)

ε̃1 = 1, ε̃2 = 0

232

wt = (0, 2, 1)

ε̃1 = 2, ε̃2 = 0

332

wt = (0, 1, 2)

ε̃1 = 1, ε̃2 = 1

s21 = F21 + F12.



From crystals to quasi-crystals

3121

4121 3221

4131 4221 3231

4132 4231 3241

4232 4331 4241

4332 4341

4342

s211 = F211 + F121 + F112
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