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Motivation

Plactic monoid

[Lascoux, Schiitzenberger '81]
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» Knuth relations
acb=cab,a<b<c
bac = bca,a< b<c
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Hypoplactic monoid
[Krob, Thibon '97], [Novelli '00]

» Quasi-ribbon tableaux,
Krob—Thibon insertion
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» Knuth + quartic relations
cadb = acbd, a<b<c<d
bdac = dbca, a< b<c<d
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Crystals

Definition
A crystal of type A,_; is a non-empty set C together with maps

é,:C—CU {L} (Kashiwara operators)
&i, i - C—7ZU {—OO} (length functions)
wt:C—7Z" (weight function)

for i € I :={1,...,n— 1}, satisfying the following:
Cl. For any x,y € C, &(x) = y iff x = fi(y), and in that case

wt(y) = wt(x) + i,  €i(y) =¢&i(x) — 1, Gi(y) = @i(x) +1

C2. 3i(x) = &i(x) + (wt(x), «;)
C3. &i(x) = —o0 = &(x) = fi(x) = L.
where a; = (0,...,0,1,—-1,0,...,0).

(This definition is generalized for other Cartan types)



Crystals

» The crystal graph associated to a crystal C is the directed weighted
graph where y — x iff &(x) = y iff fi(y) = x.
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Crystals
» A crystal is seminormal if
gilx) = max{k : &(x)" # L}, Gi(x) = max{k : fi(x)" # L},
for all i € I and x € C. In particular, &;(x), 3;(x) > 0.
£i(x)
/"/\“\

X

Gi(x)
> To compute fi(w) and &(w) on a word w € {1 < --- < n}*:
> consider the subword with only symbols i and i 4+ 1, and cancel all
pairs (i + 1)i (i-inversions), until there are no pairs left.
» & changes the leftmost i + 1 to i, if possible; if not, it is L.
> F changes the rightmost i to i + 1, if possible; if not, it is L.
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Stembridge crystals

> A Stembridge crystal is a seminormal crystal of simply-laced type
that satisfies some local axioms [Stembridge '03]. These are the
crystal graphs that correspond to representations of Lie algebras.

» The connected components have nice properties:
» Unique highest weight element (source vertex), from which all
vertices can be reached.
> All components whose highest weight elements have the same weight
are isomorphic.
> In type A, the character of a connected component is a Schur
function s,.



Stembridge crystals
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Stembridge crystals

Local axioms

S1. If &(x) =y, then Ej(y) is equal to §j(X) or §j(X) + 1 (the second case
is possible only if |/ — j| = 1).

e —H> e —> e —> 0 —> e —> e e —> e —> e —> e —> e —> e —> e
or
e —> e —> 0 —H> 0 —>e0 —>e —>0 e —> e —> 0 —> 0 —>0 —> e

for [i —j| =1
e —> 0 —> e —> 0 —> 0 —> 0

e —H> e —H> e —H> e —) e —> e

e

for |[i —j| > 1



Stembridge crystals

Local axioms

S2. If &(x) =y and
5j()/) =¢&j
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(and dual axioms for f;, E)

S3.

If &(x) =y and &j(x) = z, and

€i(z) = &i(x) + 1 and

€i(y) = &j(x) + 1 then
§6°&(x) = §&°§(x) # L.

SN
|
|
N S



Motivation

Plactic monoid

[Lascoux, Schiitzenberger '81]

» Young tableaux, Schensted

insertion

1[1]1]
2|2

-

[w

» Knuth relations
acb=cab,a<b<c
bac = bca,a< b<c

» Crystals

\H/&

(131)7 HIH

2

212
231 132 213 112
13

| |

331 232 322

N

332 323

Hypoplactic monoid
[Krob, Thibon '97], [Novelli '00]

» Quasi-ribbon tableaux,
Krob—Thibon insertion

[1]1]
[2]2]2]
[3]3]

» Knuth + quartic relations
cadb = acbd, a<b<c<d
bdac = dbca, a< b<c<d

» Quasi-crystals

121D 211D
(BB (1)
C 132 312
|
C 232 C 322



Quasi-crystals

» First introduced by Cain and M. (2017), providing another
characterization of the hypoplactic monoid of type A.

» Cain, Guilherme and M. (2023) provided a definition of abstract
quasi-crystals for other Cartan types.

> For type A, each connected component has a unique highest weight
element, is isomorphic to a quasi-crystal of quasi-ribbon tableaux,
and its character is a fundamental quasisymmetric function F,.

> We have sy = > Fpescomp(T)-

TESYT(A)

» Using this decomposition, Maas-Gariépy (2023) independently
introduced quasi-crystals, as subgraphs of a connected component of
a crystal graph.



Quasi-crystals

Definition (Cain, Guilherme, M. '23)

A quasi-crystal of type A,_1 is a non-empty set Q together with maps

&,: 9 — 9oLl {J_} (quasi-Kashiwara operators)
Ei, i1 Q — Z U {—OO, +OC}
wt: Q — 7"

for i € {1,...,n— 1}, satisfying the same axioms of crystals and
additionally:

i(x) = 400 = &(x) = fi(x) = L.

» A quasi-crystal is seminormal if, for all i € | and x € Q,
€i(x) = max{k : g(x)* # L}, @i(x) = max{k : fi(x)* # L}

whenever £;(x) # +o0.



Quasi-crystals
To compute fi(w) and &(w) on a word w € {1 < --- < n}*:
> If w has an i-inversion, fi(w) = &(w) = L.
> Otherwise, fi(w) = fi(w) and &(w) = &(w).

f(13121) =

£(13112) =

A(1 121) =
f(13112) =

A(1 121) =

f(13112) =

A(13121) = L

£(13112) =



Quasi-crystals

The quasi-crystal graph associated to a quasi-crystal Q is the directed

weighted graph where:

>y o x iff §(x) = y.

> x has an i-labelled loop iff €;(x) = 400 iff $;(x)
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Local characterization of quasi-crystals

Local quasi-crystal axioms
LQCL. If &(x) =y, then:
» For |i —j| > 1, &i(x) = &i(y).
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€i11(x) # €ir1(y) & (Eira(x) = +0 AEi(y) = 0) = Eia(y) > 0.

-—)0—)-—)}0/—).—)0 y

P
or l or
;P

Xeo — o<

e e——e—e—e—H>e—>o °
X

> Forj=1i—-1,
Bim1(x) # Gi-1(y) & ($im1(y) = +00 A Gi(x) = 0) = Gi1(x) > 0.
-—)0—)-—)0—)')-/—)0—)- }./p }-/p

oo | o |

e —> 0 —H> 0 —> 0 —> 0 —> 0 X?’{) *« —> e ...
X . X



Local characterization of quasi-crystals

Local quasi-crystal axioms

LQC2. &;(x) = 0iff $iy1(x) =0, fori € {1,...,n—2}.

i+1X.—i).—i)._i)....
i+1 I
'._)._)._).Xi
. i+1 i+1 i+1

LQC3. If both &(x) and &(x) are defined, for i # j, then
é&(x) = &é(x) # L (and dual axiom for f;, f;.)

&¢(x) = gé&(x)

§(x) » - &(x)

X o



Local characterization of quasi-crystals

Theorem (Cain, M., Rodrigues, Rodrigues '23)

If Q is a quasi-crystal of type A (not necessarily seminormal) satisfying
the local axioms, and such that &;(x) # +oo and ¢;(x) # +oo, for all
i€l,x € Q, then Q is a weak Stembridge crystal (i.e. not necessarily
seminormal).

Theorem (Cain, M., Rodrigues, Rodrigues '23)

Let Q be a connected component of a sesminormal quasi-crystal graph of
type A, weighted in LY, satisfying the local axioms. Then, Q has a
unique highest weight element, whose weight is a composition.

Theorem (Cain, M., Rodrigues, Rodrigues '23)

Let Q and Q' be connected components of seminormal quasi-crystal
graphs of type A satisfying the local axioms, with highest weight
elements u and v. If wt(u) = wt(v), then there exists a
weight-preserving isomorphism between Q and Q.



Quasi-tensor product of quasi-crystals

Cain, Guilherme, and M. (2023) introduced a notion of quasi-tensor
product of seminormal quasi-crystals, denoted Q & Q’, which has Q x Q'

as underlying set and maps:
> wi(x®x') = wt(x) + wt(x).
> If $;(x) > 0and &(x') >0, éi(X®X’) = fI(X®X/) — | and
Ei(x®x") = @i(x @ x") = +00, otherwise,

é,'(X) ®X/ if QD,(X) Z é','(X/)

é“®x)_{x®avv i 310x) < (<)

ooy - B EX i) > E(x)
ﬁ“®x)_{x®ﬁuw i ¢ilx) < ()

€i(x) = max{&;(x),&i(x") — (wt(x), ;) }

Bi(x) = max{@i(x) + (wt(x'), o), $i(x")}

(With this convention x ® y is identified with the word yx.)



Quasi-tensor product of quasi-crystals

» B3, is the standard crystal of type A,_1:

n—1

» Similarly to the case of the plactic monoid, each component of the
hypoplactic monoid is isomorphic to some B2 .

C 162 162
N\ N\

1%3 1®3

C2®3/ 2@3/

A connected component of B3 ® Bs A connected component of B3 ® B3



Quasi-tensor product of quasi-crystals
Theorem (Cain, M., Rodrigues, Rodrigues '23)

Let Q and Q' be seminormal quasi-crystal graphs satisfying the local
axioms. Then, Q&® Q' is a seminormal quasi-crystal that satisfies the
same axioms.

121 D 211 D

» The standard crystal 3, satisfies 131 311
the local axioms.

» A connected component of a C 132 C 312
quasi-crystal of words, being l l
isomorphic to some B, satisfies C 232 C 322
the local axioms. )

» As a consequence, every N
connected component of a
seminormal quasi-crystal
satisfying the local axioms is A
isomorphic a quasi-crystal of C
quasi-ribbon tableaux. v



From crystals to quasi-crystals
Let (C, - Ji) be a connected component of a
Stembridge crystal, weighted in Z%,, and define
(Q, fi, 6, &, ;) to have the same underlying set as
C and:
» Place a i-labelled loop on x if
€i(x) < wtip1(x), forallie I, x e C
(equivalently, if @;(x) < wti(x)).
» Then, remove i-labelled edges that have
i-labelled loops on both ends.

Theorem (Cain, M., Rodrigues, Rodrigues '23)
Q is a seminormal quasi-crystal that satisfies the
local axioms.

Corollary (Cain, M., Rodrigues, Rodrigues '23)

If C has highest weight A\, the number of connected
components of Q is given by the number of
standard Young tableaux of shape ).
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From crystals to quasi-crystals

C 321 D
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