

The algebra of the monoid of order-preserving functions and other reduced E-Fountain semigroups

Itamar Stein

Shamoon College of Engineering

NBSAN Manchester
June 21, 2024

The monoid of order-preserving functions

- A function $f : \{1, \dots, n\} \rightarrow \{1, \dots, n\}$ is order-preserving if $i \leq j \implies f(i) \leq f(j)$.
- We denote by \mathcal{O}_n the monoid of all order-preserving functions on $\{1, \dots, n\}$.

Example

$$f = \left(\begin{array}{cc|cc|cccc|c} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 2 & 5 & 5 & 7 & 7 & 7 & 7 & 8 \end{array} \right) \in \mathcal{O}_9$$

$$X = \{2, 4, 8, 9\}, \quad Y = \{2, 5, 7, 8\}$$

$$f = f_{Y,X}$$

- Every $f \in \mathcal{O}_n$ corresponds to $X, Y \subseteq \{1, \dots, n\}$ with $|X| = |Y|$ and $n \in X$. We set $f = f_{Y,X}$.

Associated “category”

- Goal: We want to find a ~~category~~ category-like structure C_n such that $\mathbb{k}\mathcal{O}_n \simeq \mathbb{k}C_n$ for any commutative unital ring \mathbb{k} . This approach is useful in the study of many semigroup algebras.
- A semigroup algebra

$$\mathbb{k}S = \left\{ \sum k_i s_i \mid k_i \in \mathbb{k} \quad s_i \in S \right\}$$

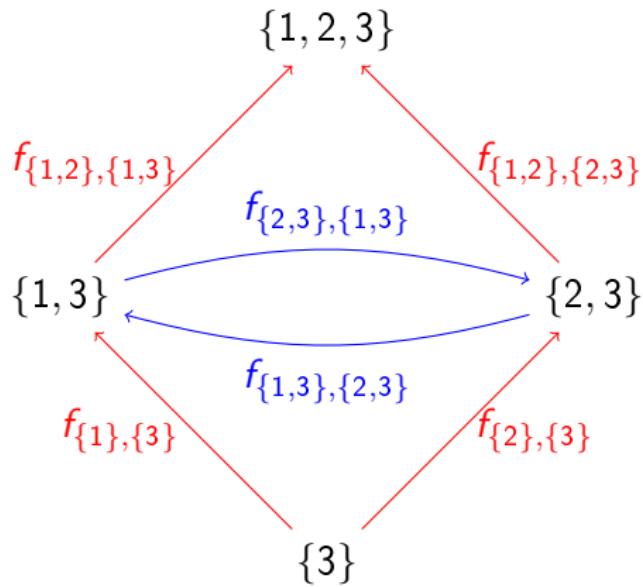
- For a “category-like” structure C , an algebra $\mathbb{k}C$ is the free \mathbb{k} -module of all linear combinations

$$\left\{ \sum k_i m_i \mid k_i \in \mathbb{k}, \ m_i \text{ morphism} \right\}$$

» if $\nexists m_i \cdot m_j$ then $m_i \cdot m_j = 0$ in $\mathbb{k}C$.

Associated “category” of \mathcal{O}_n

- The objects of C_n : Subsets $X \subseteq \{1, \dots, n\}$ with $n \in X$.
- Morphisms: With every $f_{Y,X} \in \mathcal{O}_n$ we associate a morphism from X to $Y \cup \{n\}$.
- Example: C_n for $n = 3$.



Associated “category” of \mathcal{O}_n

- Composition in C_n is defined as follows:

$$f_{W,Z} \bullet f_{Y,X} = \begin{cases} f_{W,Z} f_{Y,X} & \text{The domain of } f_{W,Z} \text{ is the range of } f_{Y,X} \\ & (Z = Y \cup \{n\}) \\ & \text{and } (n \in W \vee n \in Y) \\ \text{undefined} & \text{otherwise} \end{cases}$$

- C_n is a category with partial composition. If m_3, m_2, m_1 are three morphisms then

$$\exists m_1 \cdot (m_2 \cdot m_3) \iff \exists (m_1 \cdot m_2) \cdot m_3$$

and in this case $m_1 \cdot (m_2 \cdot m_3) = (m_1 \cdot m_2) \cdot m_3$.

Associated “category” of \mathcal{O}_n

Proposition (IS)

For every commutative unital ring \mathbb{k} , $\mathbb{k}\mathcal{O}_n \simeq \mathbb{k}C_n$.

Remark

Morita equivalence between $\mathbb{k}\mathcal{O}_n$ and $\mathbb{k}C_n$ follows from the Dold-Kan correspondence.

A generalization

We want to obtain a “ $\mathbb{k}S \simeq \mathbb{k}C$ Theorem” that generalizes the following cases:

- \mathcal{O}_n
- Reduced E -Fountain semigroups with the congruence condition (IS 2022) - This case includes inverse semigroups, monoids of partial functions and the Catalan monoid (Steinberg, Margolis, IS).
- Strict right ample semigroups (Guo & Guo 2018).
- $S^2 = S$ with central idempotents (Steinberg 2022).

Reduced E -Fountain semigroups

- Let S be a semigroup and let $E \subseteq S$ be a subset of idempotents such that $ef = e \iff fe = e \quad \forall e, f \in E$.
- Assume that every $a \in S$ has a minimum right identity from E denoted a^* .
 - If $e \in E$ then $ae = a \implies a^* \leq e \quad (\iff a^*e = a^* = ea^*)$.
- Assume that every $a \in S$ has a minimum left identity from E denoted a^+ .
 - If $e \in E$ then $ea = a \implies a^+ \leq e \quad (\iff a^+e = a^+ = ea^+)$.
- In this case S is called a reduced E -Fountain semigroup (aka DR-semigroup).

Reduced E -Fountain streets?

Reduced E -Fountain semigroups-examples

- Every inverse semigroup S is reduced E -Fountain semigroup with $E = E(S)$.
 - » $a^* = a^{-1}a$, $a^+ = aa^{-1}$.
- The monoid \mathcal{O}_n is reduced E -Fountain with $E = \{f_{X,X} \mid n \in X\}$.
 - » $(f_{Y,X})^* = f_{X,X}$, $(f_{Y,X})^+ = f_{Y \cup \{n\}, Y \cup \{n\}}$

Associated category??

- We can define a graph $C(S)$ as follows:
 - » objects: The set E .
 - » Morphisms: For every $a \in S$ we associated a morphism $C(a)$ from a^* to a^+ .
- Naive definition of composition:

$$C(b) \bullet C(a) = \begin{cases} C(ba) & b^* = a^+ \\ \text{undefined} & \text{otherwise} \end{cases}$$

- Problem: There is no reason that $b^* = a^+ \implies (ba)^* = a^* \wedge (ba)^+ = b^+$. The customary way to avoid this problem is to assume the congruence conditions

$$(ab)^* = (a^*b)^* \quad (ab)^+ = (ab^+)^+$$

-but we cannot do so!

Associated category with partial composition??

- Another attempt of defining composition:

$$C(b) \bullet C(a) = \begin{cases} C(ba) & b^* = a^+, \quad (ba)^* = a^*, \quad (ba)^+ = b^+. \\ \text{undefined} & \text{otherwise} \end{cases}$$

- Problem: There is no reason that this will be partially associative

$$\exists m_1 \cdot (m_2 \cdot m_3) \iff \exists (m_1 \cdot m_2) \cdot m_3$$

Generalized right ample identity

- A reduced E -Fountain semigroup S satisfies the generalized right ample identity if one of the following equivalent conditions holds:
 - » $\forall a, b \in S \quad (b(a(ba)^*)^*)^* = (a(ba)^*)^+$.
 - » $\forall a, b \in S \quad (ba)^* = a^* \implies (ba^+)^* = a^+$.
- The monoid \mathcal{O}_n satisfies the generalized **left** ample identity.

Proposition (IS)

Let S be a reduced E -Fountain semigroup which satisfies the generalized right ample identity, then the graph $C(S)$ with (partial) composition defined by

$$C(b) \bullet C(a) = \begin{cases} C(ba) & b^* = a^+, \quad (ba)^* = a^*, \quad (ba)^+ = b^+. \\ \text{undefined} & \text{otherwise} \end{cases}$$

is a category with partial composition.

Theorem (IS)

If S is a finite reduced E -Fountain + generalized right ample identity + another technical condition. Then

$$\mathbb{k}S \simeq \mathbb{k}\mathcal{C}(S)$$

where $\mathcal{C}(S)$ is the associated category with partial composition and \mathbb{k} is any unital commutative ring.

Is there any time left? another example

- Consider the monoid B_n of all binary relations with “angelic” composition:

$$\beta \cdot \alpha = \{(x, y) \mid \exists z \quad (x, z) \in \alpha, \quad (z, y) \in \beta\}$$

- Let B_n^d be the monoid with the same underlying set with “demonic” composition:

$$\beta * \alpha = \{(x, y) \in \beta \cdot \alpha \mid (x, z) \in \alpha \implies z \in \text{dom}(\beta)\}.$$

This is a reduced E -Fountain semigroup which satisfies the right congruence condition and the right (generalized) ample condition.

Corollary

Let \mathcal{C} be the category whose objects are subsets of $\{1, \dots, n\}$ and the hom-set $\mathcal{C}(X, Y)$ (for $X, Y \subseteq \{1, \dots, n\}$) contains all total onto relations from X to Y . Then

$$\mathbb{k} B_n^d \simeq \mathbb{k} \mathcal{C}$$

for every commutative unital ring \mathbb{k} .

Thank you!