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1. Matching of a finite regular semigroup S ...

... is a permutation ϕ of S such that for all a ∈ S (a, aϕ) ∈ V (S).

Examples

1. S an inverse semigroup, a 7→ a−1 is the unique matching of S .
2. Any union of groups also has an involution matching a 7→ a−1,
where a−1 is the group inverse of a in Ha.
3. S is a rectangular band iff every permutation is a matching.
4. The identity mapping on S is a matching iff S satisfies x = x3.



2: 7-element orthodox semigroup with no matching



3. When does a matching exist?

Theorem

([1] Prop. 1.2 & Theorem 1.6)

For a finite regular semigroup S the following are equivalent:

(i) S has a permutation matching;

(ii) |A| ≤ |V (A)| for all A ⊆ S;

(iii) S has a permutation matching that preserves the H-relation;

(iv) each principal factor Da has a permutation matching;

(v) each 0-rectangular band Da/H has a permutation matching.



4. Not closed under morphic images and subsemigroups

The class C of finite regular semigroups with a (permutation)
matching is closed under the taking of finite direct products, but
not under the taking of retracts.

The (finite) full transformation semigroup Tn is in C.



5. Orthodox semigroups

Definition

Let U1 and U2 be finite rectangular bands, let mi (resp. ni ) be the
respective number of R-classes and L-classes of Ui (i = 1, 2).
Then U1 and U2 are similar if

m1

n1
=

m2

n2
.
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Theorem

([2], Theorem 3.7)

Let S be a finite orthodox semigroup. Then S has a permutation
matching if and only if for each 0-rectangular band (Da ∪ {0})/H,
the maximal rectangular subbands are pairwise similar.

In this case, S then possesses an involution matching.



7. E-solid semigroups

Definition

A regular semigroup S is E-solid if S satisfies the condition that for
all idempotents e, f , g ∈ E (S)

eLfRg → ∃h ∈ E (S) : eRhLg .

An alternative characterisation of an E-solid semigroup is a regular
semigroup S for which the idempotent-generated subsemigroup of
S is a union of groups.



7. Most general result: E-solid semigroups

Definition
A regular semigroup S is E-solid if S satisfies the condition that for
all idempotents e, f , g ∈ E (S)

eLfRg → ∃h ∈ E (S) : eRhLg .

An alternative characterisation of an E-solid semigroup is a regular
semigroup S for which the idempotent-generated subsemigroup of
S is a union of groups.

Theorem
([3] Theorem 1.3.5) Let S be a finite E-solid semigroup. Then S
has a permutation matching if and only if the maximal rectangular
subbands of each of the 0-rectangular bands (Da ∪ {0})/ H are
pairwise similar.

Moreover if S has a permutation matching then S has an
involution matching.



8. Graph representations

The graph of inverses, G = G (S ,E ) has an edge uv if
(u, v) ∈ V (S).

A (1, 2)-factor is a subgraph G ′ = (S ,E ′) consisting of a set of
disjoint edges and cycles.

And so S has a permutation matching if and only if G has a
(1, 2)-factor.



8. Graph representations

The graph of inverses, G = G (S ,E ) has an edge uv if
(u, v) ∈ V (S). A (1, 2)-factor is a subgraph G ′ = (S ,E ′)
consisting of a set of disjoint edges and cycles.

And so S has a permutation matching if and only if G has a
(1, 2)-factor.

Let G = (V ,E ) be a graph (with loops) and let V ′ be a disjoint
copy of V . Let G ′ be the bipartite graph with independent sets V
and V ′ with uv ′ ∈ E (G ′) if and only if uv ∈ E (G ).

G ′ is the bipartite double-cover of G .

Then G has a 1, 2-factor if and only if G ′ has a 1-factor, (i.e. a
perfect matching).



9. Transformation semigroup matchings

The semigroup OPn of all orientation-preserving mappings (those
that respect the orientation of the n-cycle) has a natural involution
matching.

A member α of the D-class of rank t is defined by a triple (K ,R, i)
where K and R are ordered t-subsets of the base set defining the
initial members of the kernel classes and the range of α
respectively, and i represents the ‘twist’ of the mapping.

The canonical inverse of α′ of α is then defined by (R,K , t − i).



9. Transformation semigroup matchings

The semigroup OPn of all orientation-preserving mappings (those
that respect the orientation of the n-cycle) has a natural involution
matching.

A member α of the D-class of rank t is defined by a triple (K ,R, i)
where K and R are ordered t-subsets of the base set defining the
initial members of the kernel classes and the range of α
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or orientation-reversing mappings, in [3, Theorem 3.1.2].



9. Transformation semigroup matchings

The semigroup OPn of all orientation-preserving mappings (those
that respect the orientation of the n-cycle) has a natural involution
matching.

A member α of the D-class of rank t is defined by a triple (K ,R, i)
where K and R are ordered t-subsets of the base set defining the
initial members of the kernel classes and the range of α
respectively, and i represents the ’twist’ of the mapping. The
canonical inverse of α′ of α is then defined by (R,K , t − i).

This is extended to Pn, the semigroup of all orientation-preserving
or orientation-reversing mappings, in [3, Theorem 3.1.2].

Open Question 1.

Does the semigroup On of all order-preserving mappings on the
n-chain have a permutation matching?



10. The full transformation semigroup, Tn...

... has a permutation matching.

Definition

For α ∈ Tn write Ker(α) = {K1,K2, · · · ,Kk}, where the kernel
classes of α are listed in ascending order of cardinality. Let
Pα = (pi )1≤i≤k , where pi = |Ki |. We shall say that αQβ if
Pα = Pβ. We shall write Qα for the Q-class of α.



10. The full transformation semigroup, Tn...

... has a permutation matching.

Definition

For α ∈ Tn write Ker(α) = {K1,K2, · · · ,Kk}, where the kernel
classes of α are listed in ascending order of cardinality. Let
Pα = (pi )1≤i≤k , where pi = |Ki |. We shall say that αQβ if
Pα = Pβ. We shall write Qα for the Q-class of α.

Let G be the bipartite double cover of the graph of inverses of Tn,
restricted to some Q-class Q.

Then G is regular (each vertex has the same positive degree), and
so it follows that G has a perfect matching, and so Tn has a
permutation matching.



11. Permutation matching implies involution matching?

Theorem
([7] B. Schein) Tn is covered by its inverse subsemigroups.

Theorem
([4], part of Theorem 4.1.1). If finite S possesses a closed inverse
cover A (meaning that every non-empty intersection of a pair of
members of A is a regular (and hence inverse) subsemigroup),
then S has an involution matching.



11. Permutation matching implies involution matching?

Theorem
([7] B. Schein) Tn is covered by its inverse subsemigroups.

Theorem
([4], part of Theorem 4.1.1 ff.). If finite S possesses a closed
inverse cover A, then S has an involution matching.

Tn has no closed inverse cover for n ≥ 4.

Open Question 2. Does Tn have an involution matching?

Open Question 3. Does every semigroup with a permutation
matching have an involution matching?



12. Minimal counterexample

Theorem
([4], Proposition 2.1 ff)
(a) Suppose that S is a finite regular semigroup of minimum
cardinality with the property that S possesses a permutation
matching but no involution matching. Then S is a 0-rectangular
band.

(b) Suppose S is such a counterexample with non-zero m × n
D-class D. (wlog, m ≤ n.) Then m is not a factor of n.



13. Colour alignment problem

(F. Petrov) A positive solution to the Colour alignment problem
implies a positive solution of the involution matching problem.



13. Colour alignment problem

(F. Petrov) A positive solution to the Colour alignment problem
(CAP) implies a positive solution of the involution matching
problem.

CAP: A set of m girls have mn balls so that each girl has n balls.
There are m balls of each of n colours. Two girls may exchange
the balls (1 ball for 1 ball) but no ball may participate in more
than one exchange.

The goal is to achieve a situation where each girl has balls of all n
colours (and so exactly one of each colour).



14. Length of short words in unavoidable sets

A set of words X over a finite alphabet A is unavoidable if all but
finitely many words in the free monoid A∗ have a factor in X .

Examples

1. A = {a, b}, X = {a2, b2, ab} is unavoidable.
2. X = Am.

Any unavoidable set X of size n has a word of length less that n.

Denote by Mn the maximum possible length of the shortest word
taken over all unavoidable sets of size no more than n.



15. Bounds on Mn

Theorem
([6], Theorem 5, also see [5])

⌊logk n⌋ ≤ Mn ≤ ⌈logk n + logk(logk n)⌉.



15. Bounds on Mn

Theorem
([6], Theorem 5, also see [5])

⌊logk n⌋ ≤ Mn ≤ ⌈logk n + logk(logk n)⌉.

Proof.
Define m by

km ≤ n < km+1 ⇒ m ≤ logk n < m + 1,

and since m is an integer it follows that m = ⌊logk n⌋. Now since
X = Am is an unavoidable set all of whose members have length m
and |X | = km ≤ n, the left hand inequality is established.



15. Bounds on Mn

Theorem

⌊logk n⌋ ≤ Mn ≤ ⌈logk n + logk(logk n)⌉.

Let m denote the minimum length of words of X , an unavoidable
set of length n. For each w ∈ X , select an m-factor w ∈ Am, thus
forming an unavoidable set X ′ with |X ′| ≤ |X | ≤ n.

For any v ∈ Am, X ′ meets all sufficiently high powers v r , so X ′

contains a cyclic conjugate of v . The size of that class is at most
m so that n ≥ |X | ≥ |X ′| ≥ km

m . Taking logarithms then gives:

m ≤ logk n + logk m. (1)

Now m < n: replace m by n on the RHS in (1) to obtain
m < 2 logk n. In turn we replace m by 2 logk n in (1) to obtain:

m < logk n + logk(2 logk n) ⇒ m < 1 + logk n + logk(logk n) (2)

We conclude that m ≤ ⌈logk n + logk(logk n)⌉.



16. Bounds on Mn(2), the second-shortest word

By considering degenerate sets, X (ones containing a one-letter
word) we can, for k ≥ 3, infer bounds for Mn(2) from the bounds
for Mn(1) on a k − 1-letter alphabet:

Theorem
([6], Theorem 2.3) Suppose that |A| = k ≥ 3. Then

⌊logk−1(n−1)⌋ ≤ Mn(2) ≤ ⌈logk−1(n−1)+ logk−1 logk−1(n−1)⌉.
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word) we can, for k ≥ 3, infer bounds for Mn(2) from the bounds
for Mn(1) on a k − 1-letter alphabet.

Theorem
([6], Theorem 2.3) Suppose that |A| = k ≥ 3. Then

⌊logk−1(n−1)⌋ ≤ Mn(2) ≤ ⌈logk−1(n−1)+ logk−1 logk−1(n−1)⌉.

So consider the k = 2,A = {a, b} case. For n = 3 the only
unavoidable sets have the form:

Xl ,m = {al , bm, ab},

showing that M(2) does not exist for n = 3. Hence we restrict to
minimal unavoidable sets Xn where k = 2, n ≥ 4.



17. Codes and free monoids

A code C is a subset of a free monoid A∗ that generates a free
sub-monoid: each word in A∗ has at most one factorization in C ∗.

To obtain an upper bound on M(2), we consider two codes, the
choice depending on the nature of a shortest word s ∈ X :

C1 = {a2, b2},C2 = {ab, ab2, · · · , abm},

where m is the length of a second-shortest word of X .



17. Codes and free monoids

A code C is a subset of a free monoid A∗ that generates a free
sub-monoid: each word in A∗ has at most one factorization in C ∗.

To obtain an upper bound on M(2), we consider two codes, the
choice depending on the nature of a shortest word s ∈ X :

C1 = {a2, b2},C2 = {ab, ab2, · · · , abm},

where m is the length of a second-shortest word of X .

It is C2 that determines the upper bound for Mn(2).
By considering the cyclic conjugacy class of words in C ∗

2 ∩ Am, we
find that

|X | ≥ fm−1

m
,

where fm denotes the mth Fibonacci number.



18. Lower bound of Mn(2)

The set Cm used here comprises the words of the form:

w = babi1abi2a · · · abij−1,

where j ≥ 1, each it ≥ 1 and

(1 + i1) + (1 + i2) + · · ·+ (1 + ij) = m ≥ 2.

Then X = {a2, bm} ∪ Cm is unavoidable and has order 2 + fm−1.



18. Lower bound of Mn(2)

The set Cm used here comprises the words of the form:

w = babi1abi2a · · · abij−1,

where j ≥ 1, each it ≥ 1 and

(1 + i1) + (1 + i2) + · · ·+ (1 + ij) = m ≥ 2.

Then X = {a2, bm} ∪ Cm is unavoidable and has order 2 + fm−1.
This leads to:
Theorem ([6], Theorem 3.2) For n ≥ 4, taken over all minimal
unavoidable sets X over A = {a, b},

⌈logτ n⌉ ≤ Mn(2) ≤ logτ n + logτ (logτ n) + O(1),

where τ denotes the golden ratio.
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