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Basic idea

▶ For a positive integer n, let n = {1, . . . , n}.
▶ Tn = {functions n → n} is a semigroup under composition.

▶ The full transformation semigroup of rank n.

▶ Cayley’s Theorem: Any finite semigroup embeds in some Tn.

Definition

The degree of a finite semigroup S is the minimum such n:

deg(S) = min{n : S embeds in Tn}.

Natural problem

Given S , find deg(S). Today: S is a ‘diagram monoid’.



Basic idea

▶ For a positive integer n, let n = {1, . . . , n}.

▶ Tn = {functions n → n} is a semigroup under composition.

▶ The full transformation semigroup of rank n.

▶ Cayley’s Theorem: Any finite semigroup embeds in some Tn.

Definition

The degree of a finite semigroup S is the minimum such n:

deg(S) = min{n : S embeds in Tn}.

Natural problem

Given S , find deg(S). Today: S is a ‘diagram monoid’.



Basic idea

▶ For a positive integer n, let n = {1, . . . , n}.
▶ Tn = {functions n → n} is a semigroup under composition.

▶ The full transformation semigroup of rank n.

▶ Cayley’s Theorem: Any finite semigroup embeds in some Tn.

Definition

The degree of a finite semigroup S is the minimum such n:

deg(S) = min{n : S embeds in Tn}.

Natural problem

Given S , find deg(S). Today: S is a ‘diagram monoid’.



Basic idea

▶ For a positive integer n, let n = {1, . . . , n}.
▶ Tn = {functions n → n} is a semigroup under composition.

▶ The full transformation semigroup of rank n.

▶ Cayley’s Theorem: Any finite semigroup embeds in some Tn.

Definition

The degree of a finite semigroup S is the minimum such n:

deg(S) = min{n : S embeds in Tn}.

Natural problem

Given S , find deg(S). Today: S is a ‘diagram monoid’.



Basic idea

▶ For a positive integer n, let n = {1, . . . , n}.
▶ Tn = {functions n → n} is a semigroup under composition.

▶ The full transformation semigroup of rank n.

▶ Cayley’s Theorem: Any finite semigroup embeds in some Tn.

Definition

The degree of a finite semigroup S is the minimum such n:

deg(S) = min{n : S embeds in Tn}.

Natural problem

Given S , find deg(S). Today: S is a ‘diagram monoid’.



Basic idea

▶ For a positive integer n, let n = {1, . . . , n}.
▶ Tn = {functions n → n} is a semigroup under composition.

▶ The full transformation semigroup of rank n.

▶ Cayley’s Theorem: Any finite semigroup embeds in some Tn.

Definition

The degree of a finite semigroup S is the minimum such n:

deg(S) = min{n : S embeds in Tn}.

Natural problem

Given S , find deg(S). Today: S is a ‘diagram monoid’.



Basic idea

▶ For a positive integer n, let n = {1, . . . , n}.
▶ Tn = {functions n → n} is a semigroup under composition.

▶ The full transformation semigroup of rank n.

▶ Cayley’s Theorem: Any finite semigroup embeds in some Tn.

Definition

The degree of a finite semigroup S is the minimum such n:

deg(S) = min{n : S embeds in Tn}.

Natural problem

Given S , find deg(S).

Today: S is a ‘diagram monoid’.



Basic idea

▶ For a positive integer n, let n = {1, . . . , n}.
▶ Tn = {functions n → n} is a semigroup under composition.

▶ The full transformation semigroup of rank n.

▶ Cayley’s Theorem: Any finite semigroup embeds in some Tn.

Definition

The degree of a finite semigroup S is the minimum such n:

deg(S) = min{n : S embeds in Tn}.

Natural problem

Given S , find deg(S). Today: S is a ‘diagram monoid’.



Transformation representations/degrees: Why?

▶ For fun!

▶ Interesting semigroup families lead to interesting combinatorics.

▶ A challenge... even when S is simple...

▶ Computation.

▶ GAP works very well with transformation semigroups.

▶ Philosophy of semigroup theory.

▶ Enumeration by size: almost all semigroups are boring :-(

▶ Enumeration by degree: almost all semigroups are interesting :-)

▶ Many authors have calculated deg(S) for various (semi)groups S .

▶ Babai, Cain, Cameron, Easdown, Elias, FitzGerald, Hendriksen,
Holt, Johnson, Kovács, Malheiro, Margolis, Paulista, Pebody,
Praeger, Quinn-Gregson, Saunders, Schein, Steinberg, Wright...

...and us!
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Some simple semigroups

▶ deg(Tn) = n.

▶ deg(Sn) = n.

▶ deg(PTn) = n + 1.

▶ deg(In) = n + 1.

▶ deg(T op
n ) = 2n (!).

▶ Margolis and Steinberg (2023).

▶ Follows that deg(Bn) ≥ 2n (binary relations).

▶ And that deg(Pn) ≥ 2n (partition monoid).

▶ M&S: deg(Bn) = 2n (!).

▶ So maybe deg(Pn) = 2n?

▶ Actually, deg(Pn) = 1 +
B(n + 2)− B(n + 1) + B(n)

2
≫ 2n.
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Some more simple semigroups

▶ Left zero semigroup: a set L with product xy = x .

▶ Right zero semigroup: a set R with product xy = y .

▶ Null semigroup: a set N with product xy = 0.

▶ Easdown (1992):

▶ deg(Lp) = min{n : rn−r ≥ p for some r ∈ n}.
▶ deg(Rq) = min{n :

∏
λ ≥ q for some λ ⊢ n}.

▶ Cameron, E, FitzGerald, Mitchell, Pebody, Quinn-Gregson (2023):

▶ deg(Np) = deg(Lp)!

▶ deg(Lp × Rq) = min{n : there is a uniform hypergraph with

n vertices, q edges and p colourings}

= min{n :
∏

λ ≥ q for some λ ⊢r n − ⌈logr p⌉}.
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Partition monoids — Pn

▶ Let n = {1, . . . , n} and n′ = {1′, . . . , n′}, where n ≥ 0.

▶ The partition monoid of rank n is

Pn =
{
set partitions of n ∪ n′

}
≡

{
graphs on vertex set n ∪ n′

}
.

▶ Eg: a =
{
, , , ,

}
∈ P6

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

}
6

}
6′
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Partition monoids — product in Pn

To calculate the product of a, b ∈ Pn:

(1) connect a to b,

(2) remove middle vertices and floating components,

(3) tidy up.

a

{

b

{ 1 2

}
ab

3
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Partition monoids — involution in Pn

▶ Pn has an involution:

▶ a 7→ a∗ = ‘a turned upside down’.

a

a∗

a∗

a

▶ Pn is a regular ∗-semigroup:

▶ a∗∗ = a,

▶ (ab)∗ = b∗a∗,

▶ a = aa∗a (and a∗ = a∗aa∗).
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Diagram monoids — submonoids of Pn

Pn

PBn

Bn

Sn

PPn

Mn

TLn

idn

▶ Brauer, Temperley–Lieb, Motzkin, and more......



Diagram monoids — transformation degree

Today’s question

What is deg(Pn)?

deg(Bn)? deg(Mn)? deg(TLn)? ......

Short answer (add 1 for deg(M)):

Monoid M Validity Minimum partial transformation degree deg0(M)

Pn n � 2 B(n+2)�B(n+1)+B(n)
2

PBn n � 2 I(n+2)
2

Bn
n � 3 odd n+1

2 · n!!

n � 4 even (n+4)(n+2)
8 · (n � 1)!!

PPn n � 2 C(n + 2) � 2C(n + 1) + C(n)

Mn n � 2 M(n + 2) � M(n + 1)

TLn
n = 2k � 1 � 3 C(k + 1) � C(k)

n = 2k � 4 C(k + 2) � 2C(k + 1) + C(k)

Table 1. Formulae for the minimum partial transformation degree, deg0(M), for diagram mon-
oids M , valid for the stated values of n. For each such M and n, the minimum transformation
degree is equal to deg(M) = 1 + deg0(M). Here B(n), I(n), C(n) and M(n) are the nth Bell,
involution, Catalan and Motzkin numbers, and m!! = m(m � 2)(m � 4) · · · 1 for odd m. See Theo-
rems 4.1, 5.1 and 6.1, and Propositions 7.4–7.8.

n 0 1 2 3 4 5 6 7 8 9 10 OEIS
deg0(Pn) 1 1 6 21 83 363 1733 8942 49 484 291 871 1825 501 A087649
deg0(PBn) 1 1 5 13 38 116 382 1310 4748 17 848 70 076 A001475

deg0(Bn)
1 2 18 150 1575 19 845 1

3⇥A001194
1 6 45 420 4725 A001879

deg0(PPn) 1 1 6 19 62 207 704 2431 8502 30 056 107 236 A026012
deg0(Mn) 1 1 5 12 30 76 196 512 1353 3610 9713 A002026

deg0(TLn)
1 1 6 19 62 207 A026012

1 3 9 28 90 A000245

Table 2. Calculated values of deg0(M) for diagram monoids M , and their corresponding sequence
numbers on the OEIS [1]. Black entries are those for which the formulae in Table 1 hold. For these
entries we also have deg(M) = 1 + deg0(M).

2 Preliminaries

We begin by recalling the preliminary ideas and results we need concerning semigroups (Sec-
tion 2.1), regular ⇤-semigroups (Section 2.2) and diagram monoids (Section 2.3). For more basic
background on semigroup theory, see for example [7, 27].

2.1 Semigroups

Let S be a semigroup, and let S1 be the monoid completion of S. So S1 = S if S is a monoid, or
else S = S[{1}, where 1 is a symbol not belonging to S, acting as an adjoined identity element.
Green’s L , R and J pre-orders and equivalences are defined, for a, b 2 S, by

a L b , a 2 S1b, a L b , S1a = S1b,

a R b , a 2 bS1, a R b , aS1 = bS1,

a J b , a 2 S1bS1, a J b , S1aS1 = S1bS1.

So, for example, a L b holds when either a = b, or else a = sb and b = ta for some s, t 2 S; similar
comments apply to R and J . We also have the H and D relations, defined by H = L \ R

3
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Pn n � 2 B(n+2)�B(n+1)+B(n)
2

PBn n � 2 I(n+2)
2

Bn
n � 3 odd n+1

2 · n!!

n � 4 even (n+4)(n+2)
8 · (n � 1)!!

PPn n � 2 C(n + 2) � 2C(n + 1) + C(n)

Mn n � 2 M(n + 2) � M(n + 1)

TLn
n = 2k � 1 � 3 C(k + 1) � C(k)

n = 2k � 4 C(k + 2) � 2C(k + 1) + C(k)

Table 1. Formulae for the minimum partial transformation degree, deg0(M), for diagram mon-
oids M , valid for the stated values of n. For each such M and n, the minimum transformation
degree is equal to deg(M) = 1 + deg0(M). Here B(n), I(n), C(n) and M(n) are the nth Bell,
involution, Catalan and Motzkin numbers, and m!! = m(m � 2)(m � 4) · · · 1 for odd m. See Theo-
rems 4.1, 5.1 and 6.1, and Propositions 7.4–7.8.

n 0 1 2 3 4 5 6 7 8 9 10 OEIS
deg0(Pn) 1 1 6 21 83 363 1733 8942 49 484 291 871 1825 501 A087649
deg0(PBn) 1 1 5 13 38 116 382 1310 4748 17 848 70 076 A001475

deg0(Bn)
1 2 18 150 1575 19 845 1

3⇥A001194
1 6 45 420 4725 A001879

deg0(PPn) 1 1 6 19 62 207 704 2431 8502 30 056 107 236 A026012
deg0(Mn) 1 1 5 12 30 76 196 512 1353 3610 9713 A002026

deg0(TLn)
1 1 6 19 62 207 A026012

1 3 9 28 90 A000245

Table 2. Calculated values of deg0(M) for diagram monoids M , and their corresponding sequence
numbers on the OEIS [1]. Black entries are those for which the formulae in Table 1 hold. For these
entries we also have deg(M) = 1 + deg0(M).

2 Preliminaries

We begin by recalling the preliminary ideas and results we need concerning semigroups (Sec-
tion 2.1), regular ⇤-semigroups (Section 2.2) and diagram monoids (Section 2.3). For more basic
background on semigroup theory, see for example [7, 27].

2.1 Semigroups

Let S be a semigroup, and let S1 be the monoid completion of S. So S1 = S if S is a monoid, or
else S = S[{1}, where 1 is a symbol not belonging to S, acting as an adjoined identity element.
Green’s L , R and J pre-orders and equivalences are defined, for a, b 2 S, by

a L b , a 2 S1b, a L b , S1a = S1b,

a R b , a 2 bS1, a R b , aS1 = bS1,

a J b , a 2 S1bS1, a J b , S1aS1 = S1bS1.

So, for example, a L b holds when either a = b, or else a = sb and b = ta for some s, t 2 S; similar
comments apply to R and J . We also have the H and D relations, defined by H = L \ R

3
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involution, Catalan and Motzkin numbers, and m!! = m(m � 2)(m � 4) · · · 1 for odd m. See Theo-
rems 4.1, 5.1 and 6.1, and Propositions 7.4–7.8.
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Table 3. Calculated values of deg0(M) for diagram monoids M , and their corresponding sequence
numbers on the OEIS [1]. Black entries are those for which the formulae in Table 1 hold. For these
entries we also have deg(M) = 1 + deg0(M).

Left congruences are defined symmetrically. A (two-sided) congruence is an equivalence that
is both a left and right congruence. For example, L is a right congruence, and R is a left
congruence. The trivial and universal congruences are respectively denoted

�S = {(a, a) : a 2 S} and rS = S ⇥ S.

For a set of pairs ⌃ ✓ S ⇥ S, we write ⌃] for the (two-sided) congruence of S generated by ⌃,
i.e. the intersection of all congruences containing ⌃. When ⌃ = {(a, b)} for some a, b 2 S, we
write (a, b)] = ⌃]; such a congruence is called principal.

A right ideal of a semigroup S is a subset I ✓ S such that IS ✓ I. Left ideals and (two-
sided) ideals are defined analogously. Any left, right or two-sided ideal is a union of L -, R- or
J -classes, respectively. If I is a right ideal, then we have the Rees right congruence

RI = rI [�S = {(x, y) 2 S ⇥ S : x = y or x, y 2 I}.

As special cases we have R? = �S and RS = rS .
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Partition monoids — transformation degree

▶ Today we’ll just consider partition monoids, Pn.

Theorem

For n ≥ 2 we have

▶ deg(Pn) = 1 +
B(n + 2)− B(n + 1) + B(n)

2
.

Here B(k) is the kth Bell number.

▶ To prove such a result one needs to:

▶ find a faithful trans. rep. of the stated degree, and

▶ show that any faithful trans. rep. has at least that degree.

▶ Key tools:

▶ actions, (one- and two-sided) congruences, projections.
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Tool 1: Transformation reps and actions (folklore)

▶ Let S be a semigroup.

▶ A trans. rep. is a homomorphism ϕ : S → TX for some set X .

▶ So (aϕ)(bϕ) = (ab)ϕ for all a, b ∈ S .

▶ For a ∈ S write aϕ = fa ∈ TX .
▶ So fafb = fab for all a, b ∈ S .

▶ i.e. (xfa)fb = xfab for all a, b ∈ S and x ∈ X .

▶ A (right) action is a map X × S → X : (x , a) 7→ xa such that

▶ (xa)b = xab for all a, b ∈ S and x ∈ X .

▶ So transformation representations ≡ actions.

▶ Thus, deg(S) = min{n : S has a faithful action of degree n}.
▶ Faithful: different elements of S act differently.
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Tool 2: Actions and right congruences (folklore)

▶ Let S be a semigroup.

▶ A right congruence is a right-compatible equivalence σ on S .

▶ (x , y) ∈ σ ⇒ (xa, ya) ∈ σ for all x , y , a ∈ S .

▶ Write S/σ =
{
[x ] : x ∈ S

}
for the set of all σ-classes.

▶ Then S acts on S/σ by [x ]a = [xa].

▶ If S is a monoid, then this action is monogenic: [x ] = [1]x .

▶ Conversely, any monogenic monoid action is a right cong. action.

▶ Key fact: The action of a monoid S on S/σ is faithful

iff σ contains no non-trivial two-sided congruence.
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▶ Conversely, any monogenic monoid action is a right cong. action.

▶ Key fact: The action of a monoid S on S/σ is faithful

iff σ contains no non-trivial two-sided congruence.
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An upper bound for deg(Pn)

▶ deg(S) = min{n : S has a faithful action of degree n}.
▶ degrc(S) = min{n : S has a faithful rc action of degree n}.

▶ Upper bound: deg(S) ≤ degrc(S) ≤ |S/σ|
▶ for any (specific) right congruence σ containing no non-trivial

two-sided congruence.

▶ The two-sided congruences of Pn are known.

▶ The right congruences are much more complicated.

▶ But they can be computed for small n.

▶ GAP gave us some small(ish)-degree faithful right congruences.

▶ We were baffled...... but eventually we understood one:

▶ |Pn/σ| = 1 + λ, where λ is the number of L -classes.
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An upper bound for deg(Pn)

▶ GAP computations:

n 0 1 2 3 4 5 6 7

2n 1 2 4 8 16 32 64 128

deg(Pn) 1 2

degrc(Pn) 1 2 7 22 ≤ 84 ≤ 364 ≤ 1734 ≤ 8943

1 + λ 2 3 7 23 95 455 2431 14 215

|Pn| 1 2 15 203 4140 115 975

▶ deg(Pn) ≤ degrc(Pn) ≤ 1 + λ.

▶ This bound is not tight.

▶ But it’s an improvement on deg(Pn) ≤ |Pn|.
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An upper bound for deg(Pn)

P3
▶ |Pn/σ| = 1 + λ.

▶ One σ-class is a right ideal (grey).

▶ The rest are pieces of L -classes (white).

▶ In fact, they are ‘relative L -classes’.

▶ The L -classes are indexed by ‘projections’.

▶ So λ = |P|.

▶ Thinking about where (relative) L -classes are
moved by the action led to a new idea:

▶ Partial actions on projections.

▶ This made deg(Pn) ≤ 1 + |P| clearer......
......and let us find a faithful sub-act Q ⊂ P......

......and hence a better bound: deg(Pn) ≤ 1 + |Q|.
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Tool 3: Partial actions on projections

▶ Let S be a regular ∗-semigroup:

▶ a = aa∗a, ▶ a∗∗ = a, ▶ (ab)∗ = b∗a∗.

▶ Let P = P(S) = {p ∈ S : p2 = p = p∗}.
▶ Elements of P are called projections.

▶ Sample projection p ∈ Pn ............................

a∗

a

b∗

b

p .

▶ Fact: P = {a∗a : a ∈ S}.
▶ Follows: S acts on P by ‘conjugation’: pa = a∗pa = (pa)∗pa.

▶ Slight problem: this is not faithful when S = Pn.

▶ e.g. a = and b = act the same.

▶ Solution: partialise the action.
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Tool 3: Partial actions on projections

▶ For a ∈ Pn, define ker(a) =
{
(i , j) ∈ n× n : [i ]a = [j ]a

}
.

▶ E.g. ker(p) = (1, 2, 3 | 4, 5 | 6) for p = .

▶ For p ∈ P and a ∈ Pn define

▶ pa =

{
a∗pa if ker(pa) = ker(p)

− otherwise.

▶ This is a partial action on P, i.e. an action on P ∪ {−}.
▶ It is also faithful!

▶ E.g. again consider a = and b = .

▶ Then ker(pa) = (1, 2, 3, 6 | 4, 5) ̸= ker(p) but ker(pb) = ker(p).

▶ So pa = − but pb = b∗pb.

▶ So a and b act differently (on p).
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Tool 3: Partial actions on projections

▶ For a ∈ Pn let rank(a) = number of ‘transversals’ of a.

▶ E.g. rank(p) = 2 for p = .

▶ We have rank(a∗pa) ≤ rank(p).

▶ Q = {p ∈ P : rank(p) ≤ 2} is closed under the partial action.

▶ This action is monogenic, generated by t = .

▶ E.g. p = t p̂ where p̂ = .

▶ The action therefore corresponds to a right congruence:

▶ σ =
{
(a, b) ∈ Pn × Pn : ta = tb

}
.

▶ This contains no non-trivial two-sided congruence.

▶ So we have the upper bound deg(Pn) ≤ degrc(Pn) ≤ 1 + |Q|.
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Lower bound: deg(Pn) ≥ 1 + |Q|

▶ Suppose we have an arbitrary faithful action of Pn on X .

▶ We must show that |X | ≥ 1 + |Q|.

▶ There are three minimal two-sided congruences of Pn:

▶ λ = (z , a)♯, ▶ ρ = (z , b)♯, ▶ µ = (z , c)♯,

where z = , a = , b = , c = .

▶ The action must ‘separate’ each of the above pairs.

▶ So xz2 ̸= xa2 , xz0 ̸= xb0 , xz1 ̸= xc1 for some x0, x1, x2 ∈ X .

▶ Let Yi = x P̂i
i = {x p̂i : p ∈ Pi}. Here Pi = {p ∈ P : rank(p) = i}.

▶ Then |Yi | = |Pi | for all i ...... and Y0 ⊔ Y1 ⊔ Y2 ⊊ X .

▶ So |X | ≥ |P0|+ |P1|+ |P2|+ 1 = 1 + |Q|.
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Degree of Pn

Theorem

For n ≥ 2 we have

▶ deg(Pn) = degrc(Pn) = 1 + |Q|

= 1 +
B(n + 2)− B(n + 1) + B(n)

2
.

▶ The proof works simultaneously for Pn, PPn, PBn and Mn.

▶ The size of Q involves different combinatorial parameters.

▶ The proof can be adapted for TLn.

▶ Things are very different for Bn.

▶ e.g. deg(B2k) < degrc(B2k).
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Degree of diagram monoids

Monoid M Validity Minimum partial transformation degree deg0(M)

Pn n � 2 p0 + p1 + p2

PBn n � 2 p0 + p1 + p2

Bn
n � 3 odd p1 + 3p3

n � 4 even p0 + 2p2 + 3p4

PPn n � 2 p0 + p1 + p2

Mn n � 2 p0 + p1 + p2

TLn
n � 3 odd p1 + p3

n � 4 even p0 + p2 + p4

Table 2. Formulae for the minimum partial transformation degree, deg0(M), for diagram mon-
oids M , valid for the stated values of n. For each such M and n, the minimum transformation
degree is equal to deg(M) = 1 + deg0(M). Here B(n), I(n), C(n) and M(n) are the nth Bell,
involution, Catalan and Motzkin numbers, and m!! = m(m � 2)(m � 4) · · · 1 for odd m. See Theo-
rems 4.1, 5.1 and 6.1, and Propositions 7.4–7.8.

n 0 1 2 3 4 5 6 7 8 9 10 OEIS
deg0(Pn) 1 1 6 21 83 363 1733 8942 49 484 291 871 1825 501 A087649
deg0(PBn) 1 1 5 13 38 116 382 1310 4748 17 848 70 076 A001475

deg0(Bn)
1 2 18 150 1575 19 845 1

3⇥A001194
1 6 45 420 4725 A001879

deg0(PPn) 1 1 6 19 62 207 704 2431 8502 30 056 107 236 A026012
deg0(Mn) 1 1 5 12 30 76 196 512 1353 3610 9713 A002026

deg0(TLn)
1 1 6 19 62 207 A026012

1 3 9 28 90 A000245

Table 3. Calculated values of deg0(M) for diagram monoids M , and their corresponding sequence
numbers on the OEIS [1]. Black entries are those for which the formulae in Table 1 hold. For these
entries we also have deg(M) = 1 + deg0(M).

Left congruences are defined symmetrically. A (two-sided) congruence is an equivalence that
is both a left and right congruence. For example, L is a right congruence, and R is a left
congruence. The trivial and universal congruences are respectively denoted

�S = {(a, a) : a 2 S} and rS = S ⇥ S.

For a set of pairs ⌃ ✓ S ⇥ S, we write ⌃] for the (two-sided) congruence of S generated by ⌃,
i.e. the intersection of all congruences containing ⌃. When ⌃ = {(a, b)} for some a, b 2 S, we
write (a, b)] = ⌃]; such a congruence is called principal.

A right ideal of a semigroup S is a subset I ✓ S such that IS ✓ I. Left ideals and (two-
sided) ideals are defined analogously. Any left, right or two-sided ideal is a union of L -, R- or
J -classes, respectively. If I is a right ideal, then we have the Rees right congruence

RI = rI [�S = {(x, y) 2 S ⇥ S : x = y or x, y 2 I}.

As special cases we have R? = �S and RS = rS .
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Degree of diagram monoids

Monoid M Validity Minimum partial transformation degree deg0(M)

Pn n � 2 B(n+2)�B(n+1)+B(n)
2

PBn n � 2 I(n+2)
2

Bn
n � 3 odd n+1

2 · n!!

n � 4 even (n+4)(n+2)
8 · (n � 1)!!

PPn n � 2 C(n + 2) � 2C(n + 1) + C(n)

Mn n � 2 M(n + 2) � M(n + 1)

TLn
n = 2k � 1 � 3 C(k + 1) � C(k)

n = 2k � 4 C(k + 2) � 2C(k + 1) + C(k)

Table 1. Formulae for the minimum partial transformation degree, deg0(M), for diagram mon-
oids M , valid for the stated values of n. For each such M and n, the minimum transformation
degree is equal to deg(M) = 1 + deg0(M). Here B(n), I(n), C(n) and M(n) are the nth Bell,
involution, Catalan and Motzkin numbers, and m!! = m(m � 2)(m � 4) · · · 1 for odd m. See Theo-
rems 4.1, 5.1 and 6.1, and Propositions 7.4–7.8.

n 0 1 2 3 4 5 6 7 8 9 10 OEIS
deg0(Pn) 1 1 6 21 83 363 1733 8942 49 484 291 871 1825 501 A087649
deg0(PBn) 1 1 5 13 38 116 382 1310 4748 17 848 70 076 A001475

deg0(Bn)
1 2 18 150 1575 19 845 1

3⇥A001194
1 6 45 420 4725 A001879

deg0(PPn) 1 1 6 19 62 207 704 2431 8502 30 056 107 236 A026012
deg0(Mn) 1 1 5 12 30 76 196 512 1353 3610 9713 A002026

deg0(TLn)
1 1 6 19 62 207 A026012

1 3 9 28 90 A000245

Table 2. Calculated values of deg0(M) for diagram monoids M , and their corresponding sequence
numbers on the OEIS [1]. Black entries are those for which the formulae in Table 1 hold. For these
entries we also have deg(M) = 1 + deg0(M).

2 Preliminaries

We begin by recalling the preliminary ideas and results we need concerning semigroups (Sec-
tion 2.1), regular ⇤-semigroups (Section 2.2) and diagram monoids (Section 2.3). For more basic
background on semigroup theory, see for example [7, 27].

2.1 Semigroups

Let S be a semigroup, and let S1 be the monoid completion of S. So S1 = S if S is a monoid, or
else S = S[{1}, where 1 is a symbol not belonging to S, acting as an adjoined identity element.
Green’s L , R and J pre-orders and equivalences are defined, for a, b 2 S, by

a L b , a 2 S1b, a L b , S1a = S1b,

a R b , a 2 bS1, a R b , aS1 = bS1,

a J b , a 2 S1bS1, a J b , S1aS1 = S1bS1.

So, for example, a L b holds when either a = b, or else a = sb and b = ta for some s, t 2 S; similar
comments apply to R and J . We also have the H and D relations, defined by H = L \ R
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Thanks for listening :-)

Reinis Cirpons James East James Mitchell

▶ Transformation representations of diagram monoids

▶ arXiv:2411.14693


