

Transformation representations of diagram monoids

James East
Western Sydney University

The team

Reinis Cirpons

James East

James Mitchell

The team

Reinis Cirpons

James East

James Mitchell

- ▶ JM (2012): Do you know any good trans. reps of \mathcal{P}_n ?

The team

Reinis Cirpons

James East

James Mitchell

- ▶ JM (2012): Do you know any good trans. reps of \mathcal{P}_n ?
- ▶ JE (2012): No :-(

The team

Reinis Cirpons

James East

James Mitchell

- ▶ JM (2012): Do you know any good trans. reps of \mathcal{P}_n ?
- ▶ JE (2012): No :-(
- ▶ RC+JE+JM (2024): Yes :)
 - ▶ Transformation representations of diagram monoids
 - ▶ arXiv:2411.14693

Basic idea

Basic idea

- ▶ For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.

Basic idea

- ▶ For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.
- ▶ $\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.

Basic idea

- ▶ For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.
- ▶ $\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.
 - ▶ The full transformation semigroup of rank n .

Basic idea

- ▶ For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.
- ▶ $\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.
 - ▶ The full transformation semigroup of rank n .
- ▶ **Cayley's Theorem:** Any finite semigroup embeds in some \mathcal{T}_n .

Basic idea

- ▶ For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.
- ▶ $\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.
 - ▶ The full transformation semigroup of rank n .
- ▶ **Cayley's Theorem:** Any finite semigroup embeds in some \mathcal{T}_n .

Definition

The **degree** of a finite semigroup S is the minimum such n :

$$\deg(S) = \min\{n : S \text{ embeds in } \mathcal{T}_n\}.$$

Basic idea

- ▶ For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.
- ▶ $\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.
 - ▶ The full transformation semigroup of rank n .
- ▶ **Cayley's Theorem:** Any finite semigroup embeds in some \mathcal{T}_n .

Definition

The **degree** of a finite semigroup S is the minimum such n :

$$\deg(S) = \min\{n : S \text{ embeds in } \mathcal{T}_n\}.$$

Natural problem

Given S , find $\deg(S)$.

Basic idea

- ▶ For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.
- ▶ $\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.
 - ▶ The full transformation semigroup of rank n .
- ▶ **Cayley's Theorem:** Any finite semigroup embeds in some \mathcal{T}_n .

Definition

The **degree** of a finite semigroup S is the minimum such n :

$$\deg(S) = \min\{n : S \text{ embeds in } \mathcal{T}_n\}.$$

Natural problem

Given S , find $\deg(S)$.

Today: S is a '**diagram monoid**'.

Transformation representations/degrees: Why?

Transformation representations/degrees: Why?

- ▶ **For fun!**

Transformation representations/degrees: Why?

- ▶ **For fun!**
 - ▶ Interesting semigroup families lead to interesting combinatorics.

Transformation representations/degrees: Why?

- ▶ **For fun!**
 - ▶ Interesting semigroup families lead to interesting combinatorics.
 - ▶ A challenge.

Transformation representations/degrees: Why?

- ▶ **For fun!**
 - ▶ Interesting semigroup families lead to interesting combinatorics.
 - ▶ A challenge... even when S is simple...

Transformation representations/degrees: Why?

- ▶ **For fun!**
 - ▶ Interesting semigroup families lead to interesting combinatorics.
 - ▶ A challenge... even when S is simple...
- ▶ **Computation.**

Transformation representations/degrees: Why?

- ▶ **For fun!**
 - ▶ Interesting semigroup families lead to interesting combinatorics.
 - ▶ A challenge... even when S is simple...
- ▶ **Computation.**
 - ▶ GAP works very well with transformation semigroups.

Transformation representations/degrees: Why?

- ▶ **For fun!**
 - ▶ Interesting semigroup families lead to interesting combinatorics.
 - ▶ A challenge... even when S is simple...
- ▶ **Computation.**
 - ▶ GAP works very well with transformation semigroups.
- ▶ **Philosophy of semigroup theory.**

Transformation representations/degrees: Why?

- ▶ **For fun!**
 - ▶ Interesting semigroup families lead to interesting combinatorics.
 - ▶ A challenge... even when S is simple...
- ▶ **Computation.**
 - ▶ GAP works very well with transformation semigroups.
- ▶ **Philosophy of semigroup theory.**
 - ▶ Enumeration by size: almost all semigroups are boring :-(

Transformation representations/degrees: Why?

- ▶ **For fun!**
 - ▶ Interesting semigroup families lead to interesting combinatorics.
 - ▶ A challenge... even when S is simple...
- ▶ **Computation.**
 - ▶ GAP works very well with transformation semigroups.
- ▶ **Philosophy of semigroup theory.**
 - ▶ Enumeration by size: almost all semigroups are boring :-(
 - ▶ Enumeration by degree: almost all semigroups are interesting :-)

Transformation representations/degrees: Why?

- ▶ **For fun!**
 - ▶ Interesting semigroup families lead to interesting combinatorics.
 - ▶ A challenge... even when S is simple...
- ▶ **Computation.**
 - ▶ GAP works very well with transformation semigroups.
- ▶ **Philosophy of semigroup theory.**
 - ▶ Enumeration by size: almost all semigroups are boring :-(
 - ▶ Enumeration by degree: almost all semigroups are interesting :-)
- ▶ **Many authors** have calculated $\deg(S)$ for various (semi)groups S .
 - ▶ Babai, Cain, Cameron, Easdown, Elias, FitzGerald, Hendriksen, Holt, Johnson, Kovács, Malheiro, Margolis, Paulista, Pebody, Praeger, Quinn-Gregson, Saunders, Schein, Steinberg, Wright...
...and us!

Some simple semigroups

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) =$

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) =$

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) =$

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$
- ▶ $\deg(\mathcal{I}_n) =$

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$
- ▶ $\deg(\mathcal{I}_n) = n + 1.$

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$
- ▶ $\deg(\mathcal{I}_n) = n + 1.$
- ▶ $\deg(\mathcal{T}_n^{\text{op}}) =$

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$
- ▶ $\deg(\mathcal{I}_n) = n + 1.$
- ▶ $\deg(\mathcal{T}_n^{\text{op}}) = 2^n$ (!).

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$
- ▶ $\deg(\mathcal{I}_n) = n + 1.$
- ▶ $\deg(\mathcal{T}_n^{\text{op}}) = 2^n$ (!).
 - ▶ Margolis and Steinberg (2023).

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$
- ▶ $\deg(\mathcal{I}_n) = n + 1.$
- ▶ $\deg(\mathcal{T}_n^{\text{op}}) = 2^n$ (!).
 - ▶ Margolis and Steinberg (2023).
 - ▶ Follows that $\deg(\mathcal{B}_n) \geq 2^n$ (binary relations).

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$
- ▶ $\deg(\mathcal{I}_n) = n + 1.$
- ▶ $\deg(\mathcal{T}_n^{\text{op}}) = 2^n$ (!).
 - ▶ Margolis and Steinberg (2023).
 - ▶ Follows that $\deg(\mathcal{B}_n) \geq 2^n$ (binary relations).
 - ▶ And that $\deg(\mathcal{P}_n) \geq 2^n$ (partition monoid).

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$
- ▶ $\deg(\mathcal{I}_n) = n + 1.$
- ▶ $\deg(\mathcal{T}_n^{\text{op}}) = 2^n$ (!).
 - ▶ Margolis and Steinberg (2023).
 - ▶ Follows that $\deg(\mathcal{B}_n) \geq 2^n$ (binary relations).
 - ▶ And that $\deg(\mathcal{P}_n) \geq 2^n$ (partition monoid).
- ▶ M&S: $\deg(\mathcal{B}_n) = 2^n$ (!).

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$
- ▶ $\deg(\mathcal{I}_n) = n + 1.$
- ▶ $\deg(\mathcal{T}_n^{\text{op}}) = 2^n$ (!).
 - ▶ Margolis and Steinberg (2023).
 - ▶ Follows that $\deg(\mathcal{B}_n) \geq 2^n$ (binary relations).
 - ▶ And that $\deg(\mathcal{P}_n) \geq 2^n$ (partition monoid).
- ▶ M&S: $\deg(\mathcal{B}_n) = 2^n$ (!).
 - ▶ So maybe $\deg(\mathcal{P}_n) = 2^n?$

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$
- ▶ $\deg(\mathcal{I}_n) = n + 1.$
- ▶ $\deg(\mathcal{T}_n^{\text{op}}) = 2^n$ (!).
 - ▶ Margolis and Steinberg (2023).
 - ▶ Follows that $\deg(\mathcal{B}_n) \geq 2^n$ (binary relations).
 - ▶ And that $\deg(\mathcal{P}_n) \geq 2^n$ (partition monoid).
- ▶ M&S: $\deg(\mathcal{B}_n) = 2^n$ (!).
 - ▶ So maybe $\deg(\mathcal{P}_n) = 2^n?$
 - ▶ Actually, $\deg(\mathcal{P}_n) = 1 + \frac{B(n+2) - B(n+1) + B(n)}{2}$

Some simple semigroups

- ▶ $\deg(\mathcal{T}_n) = n.$
- ▶ $\deg(\mathcal{S}_n) = n.$
- ▶ $\deg(\mathcal{PT}_n) = n + 1.$
- ▶ $\deg(\mathcal{I}_n) = n + 1.$
- ▶ $\deg(\mathcal{T}_n^{\text{op}}) = 2^n$ (!).
 - ▶ Margolis and Steinberg (2023).
 - ▶ Follows that $\deg(\mathcal{B}_n) \geq 2^n$ (binary relations).
 - ▶ And that $\deg(\mathcal{P}_n) \geq 2^n$ (partition monoid).
- ▶ M&S: $\deg(\mathcal{B}_n) = 2^n$ (!).
 - ▶ So maybe $\deg(\mathcal{P}_n) = 2^n?$
 - ▶ Actually, $\deg(\mathcal{P}_n) = 1 + \frac{B(n+2) - B(n+1) + B(n)}{2} \gg 2^n.$

Some more simple semigroups

Some more simple semigroups

- ▶ **Left zero semigroup**: a set L with product $xy = x$.

Some more simple semigroups

- ▶ **Left zero semigroup**: a set L with product $xy = x$.
- ▶ **Right zero semigroup**: a set R with product $xy = y$.

Some more simple semigroups

- ▶ **Left zero semigroup**: a set L with product $xy = x$.
- ▶ **Right zero semigroup**: a set R with product $xy = y$.
- ▶ **Null semigroup**: a set N with product $xy = 0$.

Some more simple semigroups

- ▶ **Left zero semigroup**: a set L with product $xy = x$.
- ▶ **Right zero semigroup**: a set R with product $xy = y$.
- ▶ **Null semigroup**: a set N with product $xy = 0$.
- ▶ Easdown (1992):
 - ▶ $\deg(L_p) = \min\{n : r^{n-r} \geq p \text{ for some } r \in \mathbb{N}\}$.

Some more simple semigroups

- ▶ **Left zero semigroup**: a set L with product $xy = x$.
- ▶ **Right zero semigroup**: a set R with product $xy = y$.
- ▶ **Null semigroup**: a set N with product $xy = 0$.
- ▶ Easdown (1992):
 - ▶ $\deg(L_p) = \min\{n : r^{n-r} \geq p \text{ for some } r \in \mathbb{N}\}$.
 - ▶ $\deg(R_q) = \min\{n : \prod \lambda \geq q \text{ for some } \lambda \vdash n\}$.

Some more simple semigroups

- ▶ **Left zero semigroup**: a set L with product $xy = x$.
- ▶ **Right zero semigroup**: a set R with product $xy = y$.
- ▶ **Null semigroup**: a set N with product $xy = 0$.
- ▶ Easdown (1992):
 - ▶ $\deg(L_p) = \min\{n : r^{n-r} \geq p \text{ for some } r \in \mathbb{N}\}$.
 - ▶ $\deg(R_q) = \min\{n : \prod \lambda \geq q \text{ for some } \lambda \vdash n\}$.
- ▶ Cameron, E, FitzGerald, Mitchell, Pebody, Quinn-Gregson (2023):
 - ▶ $\deg(N_p)$

Some more simple semigroups

- ▶ **Left zero semigroup**: a set L with product $xy = x$.
- ▶ **Right zero semigroup**: a set R with product $xy = y$.
- ▶ **Null semigroup**: a set N with product $xy = 0$.
- ▶ Easdown (1992):
 - ▶ $\deg(L_p) = \min\{n : r^{n-r} \geq p \text{ for some } r \in \mathbb{N}\}$.
 - ▶ $\deg(R_q) = \min\{n : \prod \lambda \geq q \text{ for some } \lambda \vdash n\}$.
- ▶ Cameron, E, FitzGerald, Mitchell, Pebody, Quinn-Gregson (2023):
 - ▶ $\deg(N_p) = \deg(L_p)!$

Some more simple semigroups

- ▶ **Left zero semigroup**: a set L with product $xy = x$.
- ▶ **Right zero semigroup**: a set R with product $xy = y$.
- ▶ **Null semigroup**: a set N with product $xy = 0$.
- ▶ Easdown (1992):
 - ▶ $\deg(L_p) = \min\{n : r^{n-r} \geq p \text{ for some } r \in \mathbb{N}\}$.
 - ▶ $\deg(R_q) = \min\{n : \prod \lambda \geq q \text{ for some } \lambda \vdash n\}$.
- ▶ Cameron, E, FitzGerald, Mitchell, Pebody, Quinn-Gregson (2023):
 - ▶ $\deg(N_p) = \deg(L_p)!$
 - ▶ $\deg(L_p \times R_q)$

Some more simple semigroups

- ▶ **Left zero semigroup**: a set L with product $xy = x$.
- ▶ **Right zero semigroup**: a set R with product $xy = y$.
- ▶ **Null semigroup**: a set N with product $xy = 0$.
- ▶ Easdown (1992):
 - ▶ $\deg(L_p) = \min\{n : r^{n-r} \geq p \text{ for some } r \in \mathbb{N}\}$.
 - ▶ $\deg(R_q) = \min\{n : \prod \lambda \geq q \text{ for some } \lambda \vdash n\}$.
- ▶ Cameron, E, FitzGerald, Mitchell, Pebody, Quinn-Gregson (2023):
 - ▶ $\deg(N_p) = \deg(L_p)!$
 - ▶ $\deg(L_p \times R_q) = \min\{n : \text{there is a uniform hypergraph with } n \text{ vertices, } q \text{ edges and } p \text{ colourings}\}$

Some more simple semigroups

- ▶ **Left zero semigroup**: a set L with product $xy = x$.
- ▶ **Right zero semigroup**: a set R with product $xy = y$.
- ▶ **Null semigroup**: a set N with product $xy = 0$.
- ▶ Easdown (1992):
 - ▶ $\deg(L_p) = \min\{n : r^{n-r} \geq p \text{ for some } r \in \mathbb{N}\}$.
 - ▶ $\deg(R_q) = \min\{n : \prod \lambda \geq q \text{ for some } \lambda \vdash n\}$.
- ▶ Cameron, E, FitzGerald, Mitchell, Pebody, Quinn-Gregson (2023):
 - ▶ $\deg(N_p) = \deg(L_p)!$
 - ▶ $\deg(L_p \times R_q) = \min\{n : \text{there is a uniform hypergraph with } n \text{ vertices, } q \text{ edges and } p \text{ colourings}\}$
 $= \min\{n : \prod \lambda \geq q \text{ for some } \lambda \vdash_r n - \lceil \log_r p \rceil\}$.

Partition monoids — \mathcal{P}_n

Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.

Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.

$\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & \} 6 \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \end{array}$

$\begin{array}{ccccccc} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \} 6' \\ 1' & 2' & 3' & 4' & 5' & 6' & \end{array}$

Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

1 2 3 4 5 6 }6

• • • • • • }6'

1' 2' 3' 4' 5' 6'

Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

- ▶ Eg: $a = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_6$

$\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \} 6 \end{array}$

$\begin{array}{ccccccc} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 1' & 2' & 3' & 4' & 5' & 6' & \} 6' \end{array}$

Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ Eg: $a = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_6$

$\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \} 6 \end{array}$

$\begin{array}{ccccccc} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \} 6' \\ 1' & 2' & 3' & 4' & 5' & 6' \end{array}$

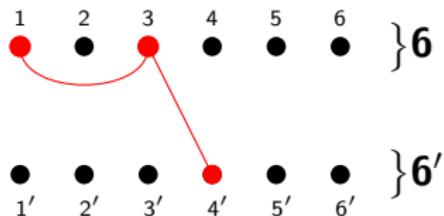
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ Eg: $a = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_6$



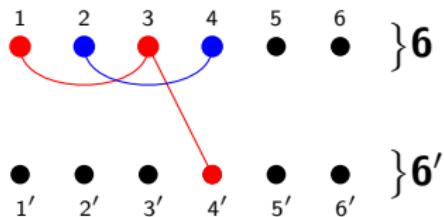
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ Eg: $a = \left\{ \{\mathbf{1}, \mathbf{3}, \mathbf{4}'\}, \{\mathbf{2}, \mathbf{4}\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_6$



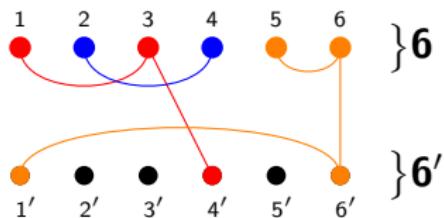
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ Eg: $a = \left\{ \{\mathbf{1}, \mathbf{3}, \mathbf{4}'\}, \{\mathbf{2}, \mathbf{4}\}, \{\mathbf{5}, \mathbf{6}, \mathbf{1}', \mathbf{6}'\}, \{\mathbf{2}', \mathbf{3}'\}, \{\mathbf{5}'\} \right\} \in \mathcal{P}_6$



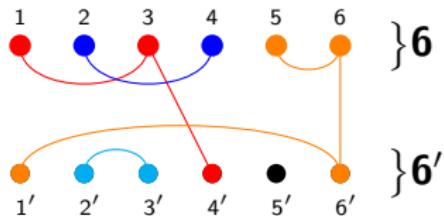
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ Eg: $a = \left\{ \{\mathbf{1}, \mathbf{3}, \mathbf{4}'\}, \{\mathbf{2}, \mathbf{4}\}, \{\mathbf{5}, \mathbf{6}, \mathbf{1}', \mathbf{6}'\}, \{\mathbf{2}', \mathbf{3}'\}, \{\mathbf{5}'\} \right\} \in \mathcal{P}_6$



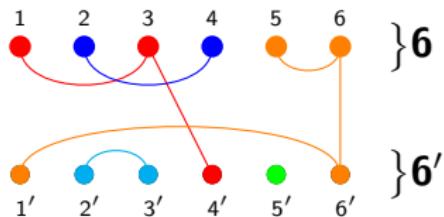
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$

$\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$

- ▶ Eg: $a = \left\{ \{\mathbf{1}, \mathbf{3}, \mathbf{4}'\}, \{\mathbf{2}, \mathbf{4}\}, \{\mathbf{5}, \mathbf{6}, \mathbf{1}', \mathbf{6}'\}, \{\mathbf{2}', \mathbf{3}'\}, \{\mathbf{5}'\} \right\} \in \mathcal{P}_6$



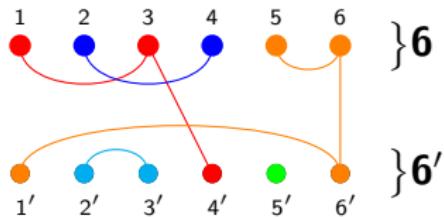
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{(\text{equiv. classes of}) \text{ graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ Eg: $a = \left\{ \{\mathbf{1}, \mathbf{3}, \mathbf{4}'\}, \{\mathbf{2}, \mathbf{4}\}, \{\mathbf{5}, \mathbf{6}, \mathbf{1}', \mathbf{6}'\}, \{\mathbf{2}', \mathbf{3}'\}, \{\mathbf{5}'\} \right\} \in \mathcal{P}_6$



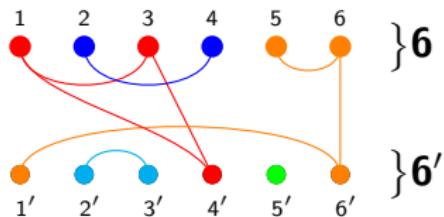
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{(\text{equiv. classes of}) \text{ graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ Eg: $a = \left\{ \{\mathbf{1}, \mathbf{3}, \mathbf{4}'\}, \{\mathbf{2}, \mathbf{4}\}, \{\mathbf{5}, \mathbf{6}, \mathbf{1}', \mathbf{6}'\}, \{\mathbf{2}', \mathbf{3}'\}, \{\mathbf{5}'\} \right\} \in \mathcal{P}_6$



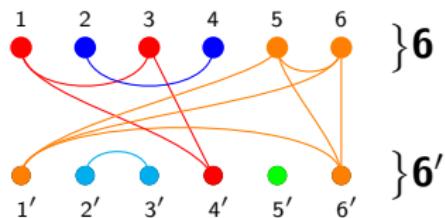
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{(\text{equiv. classes of}) \text{ graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

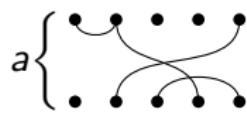
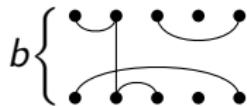
- ▶ Eg: $a = \left\{ \{\{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \} \right\} \in \mathcal{P}_6$



Partition monoids — product in \mathcal{P}_n

Partition monoids — product in \mathcal{P}_n

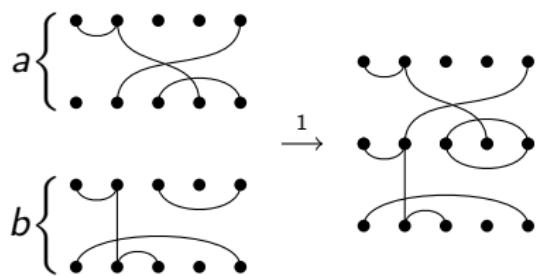
To calculate the product of $a, b \in \mathcal{P}_n$:



Partition monoids — product in \mathcal{P}_n

To calculate the product of $a, b \in \mathcal{P}_n$:

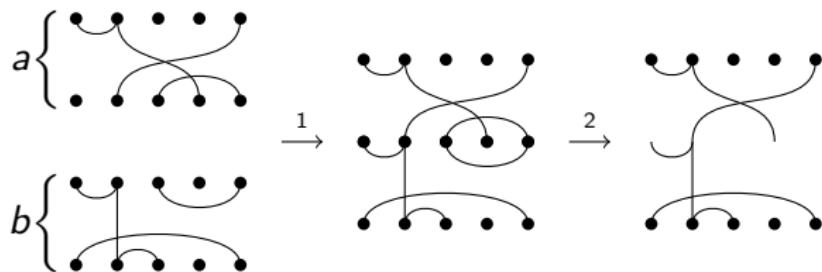
- (1) connect a to b ,



Partition monoids — product in \mathcal{P}_n

To calculate the product of $a, b \in \mathcal{P}_n$:

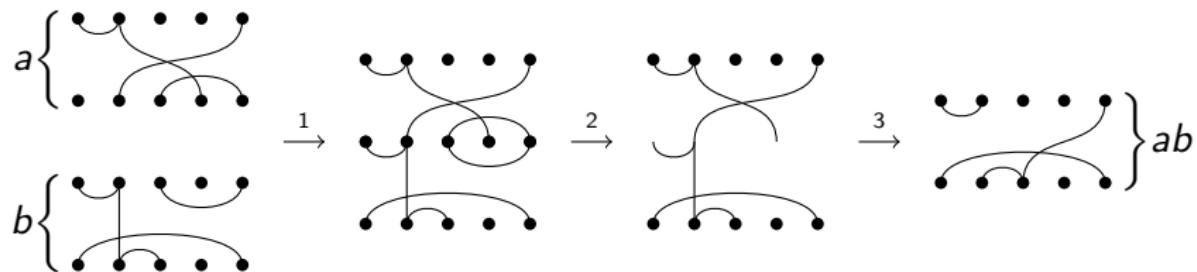
- (1) connect a to b ,
- (2) remove middle vertices and floating components,



Partition monoids — product in \mathcal{P}_n

To calculate the product of $a, b \in \mathcal{P}_n$:

- (1) connect a to b ,
- (2) remove middle vertices and floating components,
- (3) tidy up.



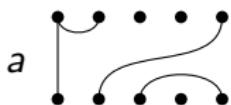
Partition monoids — involution in \mathcal{P}_n

Partition monoids — involution in \mathcal{P}_n

- ▶ \mathcal{P}_n has an involution:
 - ▶ $a \mapsto a^* = 'a \text{ turned upside down}'$.

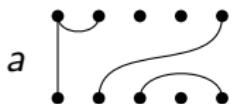
Partition monoids — involution in \mathcal{P}_n

- ▶ \mathcal{P}_n has an involution:
 - ▶ $a \mapsto a^* = \text{'a turned upside down'}$.



Partition monoids — involution in \mathcal{P}_n

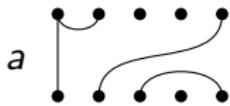
- ▶ \mathcal{P}_n has an involution:
 - ▶ $a \mapsto a^* = \text{'a turned upside down'}$.



- ▶ \mathcal{P}_n is a **regular $*$ -semigroup**

Partition monoids — involution in \mathcal{P}_n

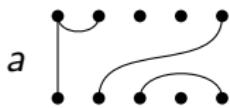
- ▶ \mathcal{P}_n has an involution:
 - ▶ $a \mapsto a^* = \text{'a turned upside down'}$.



- ▶ \mathcal{P}_n is a **regular $*$ -semigroup**:
 - ▶ $a^{**} = a$

Partition monoids — involution in \mathcal{P}_n

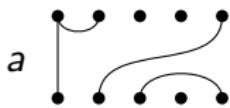
- ▶ \mathcal{P}_n has an involution:
 - ▶ $a \mapsto a^* = \text{'a turned upside down'}$.



- ▶ \mathcal{P}_n is a **regular $*$ -semigroup**:
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$

Partition monoids — involution in \mathcal{P}_n

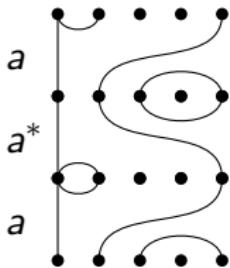
- ▶ \mathcal{P}_n has an involution:
 - ▶ $a \mapsto a^* = \text{'a turned upside down'}$.



- ▶ \mathcal{P}_n is a **regular $*$ -semigroup**:
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$,
 - ▶ $a = aa^*a$

Partition monoids — involution in \mathcal{P}_n

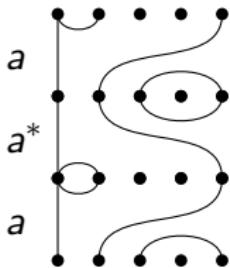
- ▶ \mathcal{P}_n has an involution:
 - ▶ $a \mapsto a^* = \text{'a turned upside down'}$.



- ▶ \mathcal{P}_n is a **regular $*$ -semigroup**:
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$,
 - ▶ $a = aa^*a$

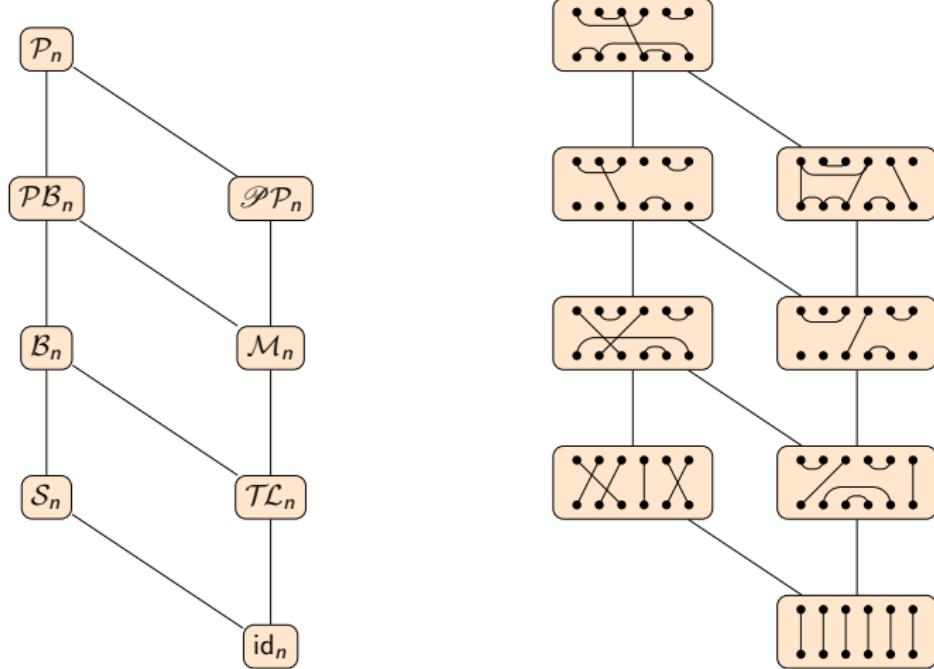
Partition monoids — involution in \mathcal{P}_n

- ▶ \mathcal{P}_n has an involution:
 - ▶ $a \mapsto a^* = \text{'a turned upside down'}$.



- ▶ \mathcal{P}_n is a **regular $*$ -semigroup**:
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$,
 - ▶ $a = aa^*a$ (and $a^* = a^*aa^*$).

Diagram monoids — submonoids of \mathcal{P}_n



- ▶ Brauer, Temperley–Lieb, Motzkin, and more.....

Diagram monoids — transformation degree

Today's question

What is $\deg(\mathcal{P}_n)$?

Diagram monoids — transformation degree

Today's question

What is $\deg(\mathcal{P}_n)$? $\deg(\mathcal{B}_n)$? $\deg(\mathcal{M}_n)$? $\deg(\mathcal{TL}_n)$?

Diagram monoids — transformation degree

Today's question

What is $\deg(\mathcal{P}_n)$? $\deg(\mathcal{B}_n)$? $\deg(\mathcal{M}_n)$? $\deg(\mathcal{TL}_n)$?

Short answer (add 1 for $\deg(M)$):

Monoid M	Validity	Minimum partial transformation degree $\deg'(M)$
\mathcal{P}_n	$n \geq 2$	$\frac{B(n+2) - B(n+1) + B(n)}{2}$
\mathcal{PB}_n	$n \geq 2$	$\frac{I(n+2)}{2}$
	$n \geq 3$ odd	$\frac{n+1}{2} \cdot n!!$
\mathcal{B}_n	$n \geq 4$ even	$\frac{(n+4)(n+2)}{8} \cdot (n-1)!!$
\mathcal{PP}_n	$n \geq 2$	$C(n+2) - 2C(n+1) + C(n)$
\mathcal{M}_n	$n \geq 2$	$M(n+2) - M(n+1)$
\mathcal{TL}_n	$n = 2k - 1 \geq 3$	$C(k+1) - C(k)$
	$n = 2k \geq 4$	$C(k+2) - 2C(k+1) + C(k)$

Diagram monoids — transformation degree

Today's question

What is $\deg(\mathcal{P}_n)$? $\deg(\mathcal{B}_n)$? $\deg(\mathcal{M}_n)$? $\deg(\mathcal{TL}_n)$?

Short answer (add 1 for $\deg(M)$):

Monoid M	Validity	Minimum partial transformation degree $\deg'(M)$
\mathcal{P}_n	$n \geq 2$	$p_0 + p_1 + p_2$
\mathcal{PB}_n	$n \geq 2$	$p_0 + p_1 + p_2$
\mathcal{B}_n	$n \geq 3$ odd	$p_1 + 3p_3$
	$n \geq 4$ even	$p_0 + 2p_2 + 3p_4$
\mathcal{PP}_n	$n \geq 2$	$p_0 + p_1 + p_2$
\mathcal{M}_n	$n \geq 2$	$p_0 + p_1 + p_2$
\mathcal{TL}_n	$n \geq 3$ odd	$p_1 + p_3$
	$n \geq 4$ even	$p_0 + p_2 + p_4$

Diagram monoids — transformation degree

Today's question

What is $\deg(\mathcal{P}_n)$? $\deg(\mathcal{B}_n)$? $\deg(\mathcal{M}_n)$? $\deg(\mathcal{TL}_n)$?

Short answer (add 1 for $\deg(M)$):

n	0	1	2	3	4	5	6	7	8	9	10	OEIS
$\deg'(\mathcal{P}_n)$	1	1	6	21	83	363	1733	8942	49484	291871	1825501	A087649
$\deg'(\mathcal{PB}_n)$	1	1	5	13	38	116	382	1310	4748	17848	70076	A001475
$\deg'(\mathcal{B}_n)$	1		2		18		150		1575		19845	$\frac{1}{3} \times \text{A001194}$
		1		6		45		420		4725		A001879
$\deg'(\mathcal{PP}_n)$	1	1	6	19	62	207	704	2431	8502	30056	107236	A026012
$\deg'(\mathcal{M}_n)$	1	1	5	12	30	76	196	512	1353	3610	9713	A002026
$\deg'(\mathcal{TL}_n)$	1		1		6		19		62		207	A026012
		1		3		9		28		90		A000245

Partition monoids — transformation degree

- ▶ Today we'll just consider partition monoids, \mathcal{P}_n .

Partition monoids — transformation degree

- ▶ Today we'll just consider partition monoids, \mathcal{P}_n .

Theorem

For $n \geq 2$ we have

$$\blacktriangleright \deg(\mathcal{P}_n) = 1 + \frac{B(n+2) - B(n+1) + B(n)}{2}.$$

Here $B(k)$ is the k th Bell number.

Partition monoids — transformation degree

- ▶ Today we'll just consider partition monoids, \mathcal{P}_n .

Theorem

For $n \geq 2$ we have

$$\blacktriangleright \deg(\mathcal{P}_n) = 1 + \frac{B(n+2) - B(n+1) + B(n)}{2}.$$

Here $B(k)$ is the k th Bell number.

- ▶ To prove such a result one needs to:
 - ▶ find a faithful trans. rep. of the stated degree

Partition monoids — transformation degree

- ▶ Today we'll just consider partition monoids, \mathcal{P}_n .

Theorem

For $n \geq 2$ we have

$$\blacktriangleright \deg(\mathcal{P}_n) = 1 + \frac{B(n+2) - B(n+1) + B(n)}{2}.$$

Here $B(k)$ is the k th Bell number.

- ▶ To prove such a result one needs to:
 - ▶ find a faithful trans. rep. of the stated degree, and
 - ▶ show that any faithful trans. rep. has at least that degree.

Partition monoids — transformation degree

- ▶ Today we'll just consider partition monoids, \mathcal{P}_n .

Theorem

For $n \geq 2$ we have

$$\mathbf{▶} \deg(\mathcal{P}_n) = 1 + \frac{B(n+2) - B(n+1) + B(n)}{2}.$$

Here $B(k)$ is the k th Bell number.

- ▶ To prove such a result one needs to:
 - ▶ find a faithful trans. rep. of the stated degree, and
 - ▶ show that any faithful trans. rep. has at least that degree.
- ▶ Key tools:
 - ▶ actions, (one- and two-sided) congruences, projections.

Tool 1: Transformation reps and **actions** (folklore)

Tool 1: Transformation reps and **actions** (folklore)

- ▶ Let S be a semigroup.

Tool 1: Transformation reps and actions (folklore)

- ▶ Let S be a semigroup.
- ▶ A **trans. rep.** is a homomorphism $\phi : S \rightarrow \mathcal{T}_X$ for some set X .

Tool 1: Transformation reps and actions (folklore)

- ▶ Let S be a semigroup.
- ▶ A **trans. rep.** is a homomorphism $\phi : S \rightarrow \mathcal{T}_X$ for some set X .
 - ▶ So $(a\phi)(b\phi) = (ab)\phi$ for all $a, b \in S$.

Tool 1: Transformation reps and actions (folklore)

- ▶ Let S be a semigroup.
- ▶ A **trans. rep.** is a homomorphism $\phi : S \rightarrow \mathcal{T}_X$ for some set X .
 - ▶ So $(a\phi)(b\phi) = (ab)\phi$ for all $a, b \in S$.
 - ▶ For $a \in S$ write $a\phi = f_a \in \mathcal{T}_X$.

Tool 1: Transformation reps and actions (folklore)

- ▶ Let S be a semigroup.
- ▶ A **trans. rep.** is a homomorphism $\phi : S \rightarrow \mathcal{T}_X$ for some set X .
 - ▶ So $(a\phi)(b\phi) = (ab)\phi$ for all $a, b \in S$.
 - ▶ For $a \in S$ write $a\phi = f_a \in \mathcal{T}_X$.
 - ▶ So $f_a f_b = f_{ab}$ for all $a, b \in S$.

Tool 1: Transformation reps and actions (folklore)

- ▶ Let S be a semigroup.
- ▶ A **trans. rep.** is a homomorphism $\phi : S \rightarrow \mathcal{T}_X$ for some set X .
 - ▶ So $(a\phi)(b\phi) = (ab)\phi$ for all $a, b \in S$.
 - ▶ For $a \in S$ write $a\phi = f_a \in \mathcal{T}_X$.
 - ▶ So $f_a f_b = f_{ab}$ for all $a, b \in S$.
 - ▶ i.e. $(xf_a)f_b = xf_{ab}$ for all $a, b \in S$ and $x \in X$.

Tool 1: Transformation reps and actions (folklore)

- ▶ Let S be a semigroup.
- ▶ A **trans. rep.** is a homomorphism $\phi : S \rightarrow \mathcal{T}_X$ for some set X .
 - ▶ So $(a\phi)(b\phi) = (ab)\phi$ for all $a, b \in S$.
 - ▶ For $a \in S$ write $a\phi = f_a \in \mathcal{T}_X$.
 - ▶ So $f_a f_b = f_{ab}$ for all $a, b \in S$.
 - ▶ i.e. $(xf_a)f_b = xf_{ab}$ for all $a, b \in S$ and $x \in X$.
- ▶ A **(right) action** is a map $X \times S \rightarrow X : (x, a) \mapsto x^a$

Tool 1: Transformation reps and actions (folklore)

- ▶ Let S be a semigroup.
- ▶ A **trans. rep.** is a homomorphism $\phi : S \rightarrow \mathcal{T}_X$ for some set X .
 - ▶ So $(a\phi)(b\phi) = (ab)\phi$ for all $a, b \in S$.
 - ▶ For $a \in S$ write $a\phi = f_a \in \mathcal{T}_X$.
 - ▶ So $f_a f_b = f_{ab}$ for all $a, b \in S$.
 - ▶ i.e. $(xf_a)f_b = xf_{ab}$ for all $a, b \in S$ and $x \in X$.
- ▶ A **(right) action** is a map $X \times S \rightarrow X : (x, a) \mapsto x^a$ such that
 - ▶ $(x^a)^b = x^{ab}$ for all $a, b \in S$ and $x \in X$.

Tool 1: Transformation reps and actions (folklore)

- ▶ Let S be a semigroup.
- ▶ A **trans. rep.** is a homomorphism $\phi : S \rightarrow \mathcal{T}_X$ for some set X .
 - ▶ So $(a\phi)(b\phi) = (ab)\phi$ for all $a, b \in S$.
 - ▶ For $a \in S$ write $a\phi = f_a \in \mathcal{T}_X$.
 - ▶ So $f_a f_b = f_{ab}$ for all $a, b \in S$.
 - ▶ i.e. $(xf_a)f_b = xf_{ab}$ for all $a, b \in S$ and $x \in X$.
- ▶ A **(right) action** is a map $X \times S \rightarrow X : (x, a) \mapsto x^a$ such that
 - ▶ $(x^a)^b = x^{ab}$ for all $a, b \in S$ and $x \in X$.

Tool 1: Transformation reps and actions (folklore)

- ▶ Let S be a semigroup.
- ▶ A **trans. rep.** is a homomorphism $\phi : S \rightarrow \mathcal{T}_X$ for some set X .
 - ▶ So $(a\phi)(b\phi) = (ab)\phi$ for all $a, b \in S$.
 - ▶ For $a \in S$ write $a\phi = f_a \in \mathcal{T}_X$.
 - ▶ So $f_a f_b = f_{ab}$ for all $a, b \in S$.
 - ▶ i.e. $(xf_a)f_b = xf_{ab}$ for all $a, b \in S$ and $x \in X$.
- ▶ A **(right) action** is a map $X \times S \rightarrow X : (x, a) \mapsto x^a$ such that
 - ▶ $(x^a)^b = x^{ab}$ for all $a, b \in S$ and $x \in X$.
- ▶ So transformation representations \equiv actions.

Tool 1: Transformation reps and actions (folklore)

- ▶ Let S be a semigroup.
- ▶ A **trans. rep.** is a homomorphism $\phi : S \rightarrow \mathcal{T}_X$ for some set X .
 - ▶ So $(a\phi)(b\phi) = (ab)\phi$ for all $a, b \in S$.
 - ▶ For $a \in S$ write $a\phi = f_a \in \mathcal{T}_X$.
 - ▶ So $f_a f_b = f_{ab}$ for all $a, b \in S$.
 - ▶ i.e. $(xf_a)f_b = xf_{ab}$ for all $a, b \in S$ and $x \in X$.
- ▶ A **(right) action** is a map $X \times S \rightarrow X : (x, a) \mapsto x^a$ such that
 - ▶ $(x^a)^b = x^{ab}$ for all $a, b \in S$ and $x \in X$.
- ▶ So transformation representations \equiv actions.
 - ▶ Thus, $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}$.

Tool 1: Transformation reps and actions (folklore)

- ▶ Let S be a semigroup.
- ▶ A **trans. rep.** is a homomorphism $\phi : S \rightarrow \mathcal{T}_X$ for some set X .
 - ▶ So $(a\phi)(b\phi) = (ab)\phi$ for all $a, b \in S$.
 - ▶ For $a \in S$ write $a\phi = f_a \in \mathcal{T}_X$.
 - ▶ So $f_a f_b = f_{ab}$ for all $a, b \in S$.
 - ▶ i.e. $(xf_a)f_b = xf_{ab}$ for all $a, b \in S$ and $x \in X$.
- ▶ A **(right) action** is a map $X \times S \rightarrow X : (x, a) \mapsto x^a$ such that
 - ▶ $(x^a)^b = x^{ab}$ for all $a, b \in S$ and $x \in X$.
- ▶ So transformation representations \equiv actions.
 - ▶ Thus, $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}$.
 - ▶ Faithful: different elements of S act differently.

Tool 2: Actions and right congruences (folklore)

Tool 2: Actions and right congruences (folklore)

- ▶ Let S be a semigroup.

Tool 2: Actions and right congruences (folklore)

- ▶ Let S be a semigroup.
- ▶ A **right congruence** is a right-compatible equivalence σ on S .

Tool 2: Actions and right congruences (folklore)

- ▶ Let S be a semigroup.
- ▶ A **right congruence** is a right-compatible equivalence σ on S .
 - ▶ $(x, y) \in \sigma \Rightarrow (xa, ya) \in \sigma$ for all $x, y, a \in S$.

Tool 2: Actions and right congruences (folklore)

- ▶ Let S be a semigroup.
- ▶ A **right congruence** is a right-compatible equivalence σ on S .
 - ▶ $(x, y) \in \sigma \Rightarrow (xa, ya) \in \sigma$ for all $x, y, a \in S$.
- ▶ Write $S/\sigma = \{[x] : x \in S\}$ for the set of all σ -classes.

Tool 2: Actions and right congruences (folklore)

- ▶ Let S be a semigroup.
- ▶ A **right congruence** is a right-compatible equivalence σ on S .
 - ▶ $(x, y) \in \sigma \Rightarrow (xa, ya) \in \sigma$ for all $x, y, a \in S$.
- ▶ Write $S/\sigma = \{[x] : x \in S\}$ for the set of all σ -classes.
 - ▶ Then S acts on S/σ by $[x]^a = [xa]$.

Tool 2: Actions and right congruences (folklore)

- ▶ Let S be a semigroup.
- ▶ A **right congruence** is a right-compatible equivalence σ on S .
 - ▶ $(x, y) \in \sigma \Rightarrow (xa, ya) \in \sigma$ for all $x, y, a \in S$.
- ▶ Write $S/\sigma = \{[x] : x \in S\}$ for the set of all σ -classes.
 - ▶ Then S acts on S/σ by $[x]^a = [xa]$.
- ▶ If S is a monoid, then this action is **monogenic**

Tool 2: Actions and right congruences (folklore)

- ▶ Let S be a semigroup.
- ▶ A **right congruence** is a right-compatible equivalence σ on S .
 - ▶ $(x, y) \in \sigma \Rightarrow (xa, ya) \in \sigma$ for all $x, y, a \in S$.
- ▶ Write $S/\sigma = \{[x] : x \in S\}$ for the set of all σ -classes.
 - ▶ Then S acts on S/σ by $[x]^a = [xa]$.
- ▶ If S is a monoid, then this action is **monogenic**: $[x] = [1]^x$.

Tool 2: Actions and right congruences (folklore)

- ▶ Let S be a semigroup.
- ▶ A **right congruence** is a right-compatible equivalence σ on S .
 - ▶ $(x, y) \in \sigma \Rightarrow (xa, ya) \in \sigma$ for all $x, y, a \in S$.
- ▶ Write $S/\sigma = \{[x] : x \in S\}$ for the set of all σ -classes.
 - ▶ Then S acts on S/σ by $[x]^a = [xa]$.
- ▶ If S is a monoid, then this action is **monogenic**: $[x] = [1]^x$.
 - ▶ Conversely, any monogenic monoid action is a right cong. action.

Tool 2: Actions and right congruences (folklore)

- ▶ Let S be a semigroup.
- ▶ A **right congruence** is a right-compatible equivalence σ on S .
 - ▶ $(x, y) \in \sigma \Rightarrow (xa, ya) \in \sigma$ for all $x, y, a \in S$.
- ▶ Write $S/\sigma = \{[x] : x \in S\}$ for the set of all σ -classes.
 - ▶ Then S acts on S/σ by $[x]^a = [xa]$.
- ▶ If S is a monoid, then this action is **monogenic**: $[x] = [1]^x$.
 - ▶ Conversely, any monogenic monoid action is a right cong. action.
- ▶ **Key fact:** The action of a monoid S on S/σ is faithful iff σ contains no non-trivial two-sided congruence.

An upper bound for $\deg(\mathcal{P}_n)$

An upper bound for $\deg(\mathcal{P}_n)$

- $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}.$

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}.$
- ▶ $\deg_{\text{rc}}(S) = \min\{n : S \text{ has a faithful rc action of degree } n\}.$

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}.$
- ▶ $\deg_{\text{rc}}(S) = \min\{n : S \text{ has a faithful rc action of degree } n\}.$
- ▶ Upper bound: $\deg(S) \leq \deg_{\text{rc}}(S)$

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}.$
- ▶ $\deg_{\text{rc}}(S) = \min\{n : S \text{ has a faithful rc action of degree } n\}.$
- ▶ Upper bound: $\deg(S) \leq \deg_{\text{rc}}(S) \leq |S/\sigma|$
 - ▶ for any (specific) right congruence σ containing no non-trivial two-sided congruence.

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}$.
- ▶ $\deg_{\text{rc}}(S) = \min\{n : S \text{ has a faithful rc action of degree } n\}$.
- ▶ Upper bound: $\deg(S) \leq \deg_{\text{rc}}(S) \leq |S/\sigma|$
 - ▶ for any (specific) right congruence σ containing no non-trivial two-sided congruence.
- ▶ The two-sided congruences of \mathcal{P}_n are known.

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}.$
- ▶ $\deg_{\text{rc}}(S) = \min\{n : S \text{ has a faithful rc action of degree } n\}.$
- ▶ Upper bound: $\deg(S) \leq \deg_{\text{rc}}(S) \leq |S/\sigma|$
 - ▶ for any (specific) right congruence σ containing no non-trivial two-sided congruence.
- ▶ The two-sided congruences of \mathcal{P}_n are known.
 - ▶ The right congruences are much more complicated.

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}$.
- ▶ $\deg_{\text{rc}}(S) = \min\{n : S \text{ has a faithful rc action of degree } n\}$.
- ▶ Upper bound: $\deg(S) \leq \deg_{\text{rc}}(S) \leq |S/\sigma|$
 - ▶ for any (specific) right congruence σ containing no non-trivial two-sided congruence.
- ▶ The two-sided congruences of \mathcal{P}_n are known.
 - ▶ The right congruences are much more complicated.
 - ▶ But they can be computed for small n .

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}$.
- ▶ $\deg_{\text{rc}}(S) = \min\{n : S \text{ has a faithful rc action of degree } n\}$.
- ▶ Upper bound: $\deg(S) \leq \deg_{\text{rc}}(S) \leq |S/\sigma|$
 - ▶ for any (specific) right congruence σ containing no non-trivial two-sided congruence.
- ▶ The two-sided congruences of \mathcal{P}_n are known.
 - ▶ The right congruences are much more complicated.
 - ▶ But they can be computed for small n .
- ▶ GAP gave us some small(ish)-degree faithful right congruences.

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}$.
- ▶ $\deg_{\text{rc}}(S) = \min\{n : S \text{ has a faithful rc action of degree } n\}$.
- ▶ Upper bound: $\deg(S) \leq \deg_{\text{rc}}(S) \leq |S/\sigma|$
 - ▶ for any (specific) right congruence σ containing no non-trivial two-sided congruence.
- ▶ The two-sided congruences of \mathcal{P}_n are known.
 - ▶ The right congruences are much more complicated.
 - ▶ But they can be computed for small n .
- ▶ GAP gave us some small(ish)-degree faithful right congruences.
 - ▶ We were baffled.....

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}$.
- ▶ $\deg_{\text{rc}}(S) = \min\{n : S \text{ has a faithful rc action of degree } n\}$.
- ▶ Upper bound: $\deg(S) \leq \deg_{\text{rc}}(S) \leq |S/\sigma|$
 - ▶ for any (specific) right congruence σ containing no non-trivial two-sided congruence.
- ▶ The two-sided congruences of \mathcal{P}_n are known.
 - ▶ The right congruences are much more complicated.
 - ▶ But they can be computed for small n .
- ▶ GAP gave us some small(ish)-degree faithful right congruences.
 - ▶ We were baffled..... but eventually we understood one

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ $\deg(S) = \min\{n : S \text{ has a faithful action of degree } n\}$.
- ▶ $\deg_{\text{rc}}(S) = \min\{n : S \text{ has a faithful rc action of degree } n\}$.
- ▶ Upper bound: $\deg(S) \leq \deg_{\text{rc}}(S) \leq |S/\sigma|$
 - ▶ for any (specific) right congruence σ containing no non-trivial two-sided congruence.
- ▶ The two-sided congruences of \mathcal{P}_n are known.
 - ▶ The right congruences are much more complicated.
 - ▶ But they can be computed for small n .
- ▶ GAP gave us some small(ish)-degree faithful right congruences.
 - ▶ We were baffled..... but eventually we understood one:
 - ▶ $|\mathcal{P}_n/\sigma| = 1 + \lambda$, where λ is the number of \mathcal{L} -classes.

An upper bound for $\deg(\mathcal{P}_n)$

- GAP computations:

n	0	1	2	3	4	5	6	7
2^n	1	2	4	8	16	32	64	128
$\deg(\mathcal{P}_n)$	1	2						
$\deg_{\text{rc}}(\mathcal{P}_n)$	1	2	7	22	≤ 84	≤ 364	≤ 1734	≤ 8943
$1 + \lambda$	2	3	7	23	95	455	2431	14 215
$ \mathcal{P}_n $	1	2	15	203	4140	115 975		

An upper bound for $\deg(\mathcal{P}_n)$

- GAP computations:

n	0	1	2	3	4	5	6	7
2^n	1	2	4	8	16	32	64	128
$\deg(\mathcal{P}_n)$	1	2						
$\deg_{\text{rc}}(\mathcal{P}_n)$	1	2	7	22	≤ 84	≤ 364	≤ 1734	≤ 8943
$1 + \lambda$	2	3	7	23	95	455	2431	14 215
$ \mathcal{P}_n $	1	2	15	203	4140	115 975		

- $\deg(\mathcal{P}_n) \leq \deg_{\text{rc}}(\mathcal{P}_n) \leq 1 + \lambda$.

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ GAP computations:

n	0	1	2	3	4	5	6	7
2^n	1	2	4	8	16	32	64	128
$\deg(\mathcal{P}_n)$	1	2						
$\deg_{\text{rc}}(\mathcal{P}_n)$	1	2	7	22	≤ 84	≤ 364	≤ 1734	≤ 8943
$1 + \lambda$	2	3	7	23	95	455	2431	14 215
$ \mathcal{P}_n $	1	2	15	203	4140	115 975		

- ▶ $\deg(\mathcal{P}_n) \leq \deg_{\text{rc}}(\mathcal{P}_n) \leq 1 + \lambda$.
- ▶ This bound is not tight.

An upper bound for $\deg(\mathcal{P}_n)$

- ▶ GAP computations:

n	0	1	2	3	4	5	6	7
2^n	1	2	4	8	16	32	64	128
$\deg(\mathcal{P}_n)$	1	2						
$\deg_{\text{rc}}(\mathcal{P}_n)$	1	2	7	22	≤ 84	≤ 364	≤ 1734	≤ 8943
$1 + \lambda$	2	3	7	23	95	455	2431	14 215
$ \mathcal{P}_n $	1	2	15	203	4140	115 975		

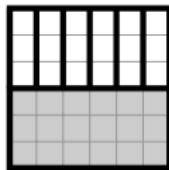
- ▶ $\deg(\mathcal{P}_n) \leq \deg_{\text{rc}}(\mathcal{P}_n) \leq 1 + \lambda$.
- ▶ This bound is not tight.
- ▶ But it's an improvement on $\deg(\mathcal{P}_n) \leq |\mathcal{P}_n|$.

An upper bound for $\deg(\mathcal{P}_n)$

\mathcal{P}_3

► $|\mathcal{P}_n/\sigma| = 1 + \lambda.$

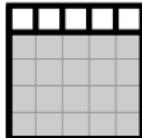
|



|



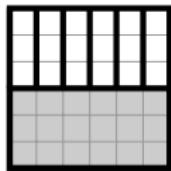
|



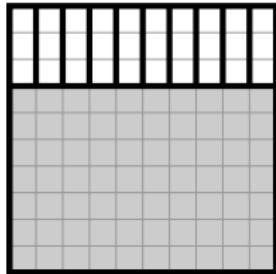
An upper bound for $\deg(\mathcal{P}_n)$

\mathcal{P}_3

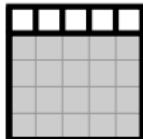
|



|



|



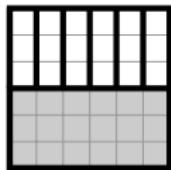
► $|\mathcal{P}_n/\sigma| = 1 + \lambda$.

► One σ -class is a right ideal (grey).

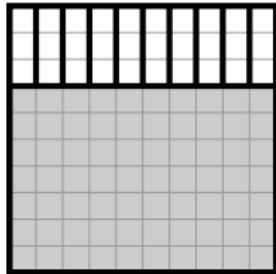
An upper bound for $\deg(\mathcal{P}_n)$

\mathcal{P}_3

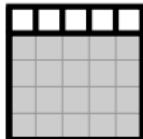
|



|



|

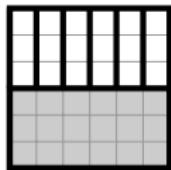


- ▶ $|\mathcal{P}_n/\sigma| = 1 + \lambda$.
- ▶ One σ -class is a right ideal (grey).
- ▶ The rest are pieces of \mathcal{L} -classes (white).

An upper bound for $\deg(\mathcal{P}_n)$

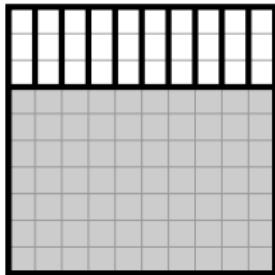
\mathcal{P}_3

|

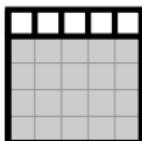


- ▶ $|\mathcal{P}_n/\sigma| = 1 + \lambda$.
- ▶ One σ -class is a right ideal (grey).
- ▶ The rest are pieces of \mathcal{L} -classes (white).
 - ▶ In fact, they are 'relative \mathcal{L} -classes'.

|

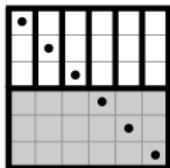
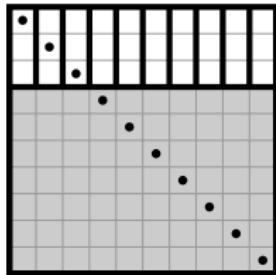
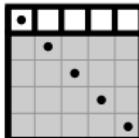


|



An upper bound for $\deg(\mathcal{P}_n)$

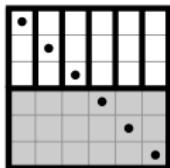
\mathcal{P}_3



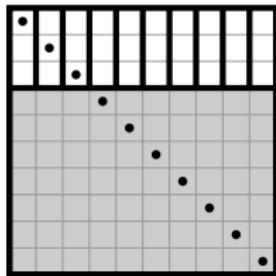
- ▶ $|\mathcal{P}_n/\sigma| = 1 + \lambda$.
- ▶ One σ -class is a right ideal (grey).
- ▶ The rest are pieces of \mathcal{L} -classes (white).
 - ▶ In fact, they are 'relative \mathcal{L} -classes'.
- ▶ The \mathcal{L} -classes are indexed by 'projections'.

An upper bound for $\deg(\mathcal{P}_n)$

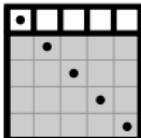
\mathcal{P}_3



|



|

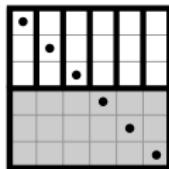


- ▶ $|\mathcal{P}_n/\sigma| = 1 + \lambda$.
- ▶ One σ -class is a right ideal (grey).
- ▶ The rest are pieces of \mathcal{L} -classes (white).
 - ▶ In fact, they are 'relative \mathcal{L} -classes'.
- ▶ The \mathcal{L} -classes are indexed by 'projections'.
 - ▶ So $\lambda = |P|$.

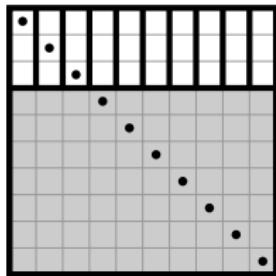
An upper bound for $\deg(\mathcal{P}_n)$

\mathcal{P}_3

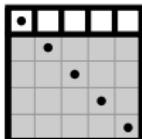
|



|



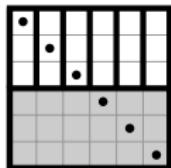
|



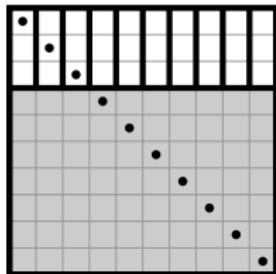
- ▶ $|\mathcal{P}_n/\sigma| = 1 + \lambda$.
- ▶ One σ -class is a right ideal (grey).
- ▶ The rest are pieces of \mathcal{L} -classes (white).
 - ▶ In fact, they are 'relative \mathcal{L} -classes'.
- ▶ The \mathcal{L} -classes are indexed by 'projections'.
 - ▶ So $\lambda = |P|$.
- ▶ Thinking about where (relative) \mathcal{L} -classes are moved by the action led to a new idea

An upper bound for $\deg(\mathcal{P}_n)$

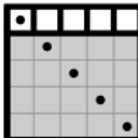
\mathcal{P}_3



|



|

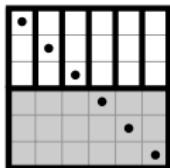


- ▶ $|\mathcal{P}_n/\sigma| = 1 + \lambda$.
- ▶ One σ -class is a right ideal (grey).
- ▶ The rest are pieces of \mathcal{L} -classes (white).
 - ▶ In fact, they are 'relative \mathcal{L} -classes'.
- ▶ The \mathcal{L} -classes are indexed by 'projections'.
 - ▶ So $\lambda = |P|$.
- ▶ Thinking about where (relative) \mathcal{L} -classes are moved by the action led to a new idea:
 - ▶ **Partial actions on projections.**

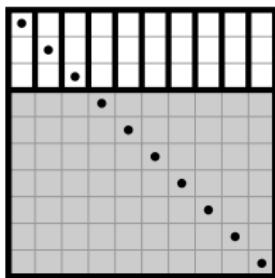
An upper bound for $\deg(\mathcal{P}_n)$

\mathcal{P}_3

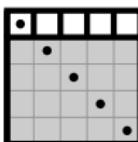
|



|



|

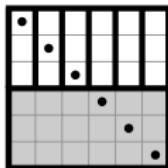


- ▶ $|\mathcal{P}_n/\sigma| = 1 + \lambda$.
- ▶ One σ -class is a right ideal (grey).
- ▶ The rest are pieces of \mathcal{L} -classes (white).
 - ▶ In fact, they are 'relative \mathcal{L} -classes'.
- ▶ The \mathcal{L} -classes are indexed by 'projections'.
 - ▶ So $\lambda = |P|$.
- ▶ Thinking about where (relative) \mathcal{L} -classes are moved by the action led to a new idea:
 - ▶ **Partial actions on projections.**
- ▶ This made $\deg(\mathcal{P}_n) \leq 1 + |P|$ clearer.

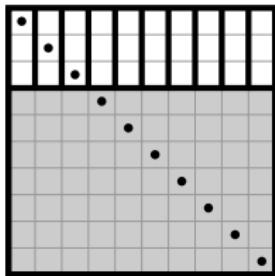
An upper bound for $\deg(\mathcal{P}_n)$

\mathcal{P}_3

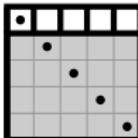
|



|



|

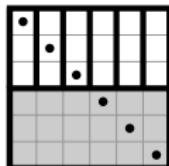


- ▶ $|\mathcal{P}_n/\sigma| = 1 + \lambda$.
- ▶ One σ -class is a right ideal (grey).
- ▶ The rest are pieces of \mathcal{L} -classes (white).
 - ▶ In fact, they are 'relative \mathcal{L} -classes'.
- ▶ The \mathcal{L} -classes are indexed by 'projections'.
 - ▶ So $\lambda = |P|$.
- ▶ Thinking about where (relative) \mathcal{L} -classes are moved by the action led to a new idea:
 - ▶ **Partial actions on projections.**
- ▶ This made $\deg(\mathcal{P}_n) \leq 1 + |P|$ clearer.....
.....and let us find a faithful sub-act $Q \subset P$.

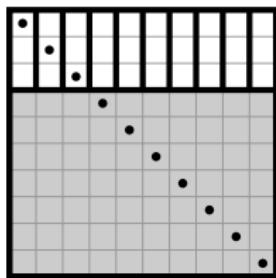
An upper bound for $\deg(\mathcal{P}_n)$

\mathcal{P}_3

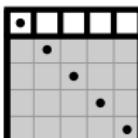
|



|



|



- ▶ $|\mathcal{P}_n/\sigma| = 1 + \lambda$.
- ▶ One σ -class is a right ideal (grey).
- ▶ The rest are pieces of \mathcal{L} -classes (white).
 - ▶ In fact, they are 'relative \mathcal{L} -classes'.
- ▶ The \mathcal{L} -classes are indexed by 'projections'.
 - ▶ So $\lambda = |P|$.
- ▶ Thinking about where (relative) \mathcal{L} -classes are moved by the action led to a new idea:
 - ▶ **Partial actions on projections.**
- ▶ This made $\deg(\mathcal{P}_n) \leq 1 + |P|$ clearer.....
 -and let us find a faithful sub-act $Q \subset P$
 -and hence a better bound: $\deg(\mathcal{P}_n) \leq 1 + |Q|$.

An upper bound for $\deg(\mathcal{P}_n)$

- GAP computations:

n	0	1	2	3	4	5	6	7
2^n	1	2	4	8	16	32	64	128
$\deg(\mathcal{P}_n)$	1	2						
$\deg_{\text{rc}}(\mathcal{P}_n)$	1	2	7	22	≤ 84	≤ 364	≤ 1734	≤ 8943
$1 + \mathcal{P} $	2	3	7	23	95	455	2431	14 215
$ \mathcal{P}_n $	1	2	15	203	4140	115 975		

An upper bound for $\deg(\mathcal{P}_n)$

- GAP computations:

n	0	1	2	3	4	5	6	7
2^n	1	2	4	8	16	32	64	128
$\deg(\mathcal{P}_n)$	1	2						
$\deg_{rc}(\mathcal{P}_n)$	1	2	7	22	≤ 84	≤ 364	≤ 1734	≤ 8943
$1 + Q $	2	3	7	22	84	364	1734	8943
$1 + P $	2	3	7	23	95	455	2431	14 215
$ \mathcal{P}_n $	1	2	15	203	4140	115 975		

An upper bound for $\deg(\mathcal{P}_n)$

- GAP computations:

n	0	1	2	3	4	5	6	7
2^n	1	2	4	8	16	32	64	128
$\deg(\mathcal{P}_n)$	1	2						
$\deg_{rc}(\mathcal{P}_n)$	1	2	7	22	≤ 84	≤ 364	≤ 1734	≤ 8943
$1 + Q $	2	3	7	22	84	364	1734	8943
$1 + P $	2	3	7	23	95	455	2431	14 215
$ \mathcal{P}_n $	1	2	15	203	4140	115 975		

Reasonable conjecture

$$\deg(\mathcal{P}_n) = 1 + |Q|$$

An upper bound for $\deg(\mathcal{P}_n)$

- GAP computations:

n	0	1	2	3	4	5	6	7
2^n	1	2	4	8	16	32	64	128
$\deg(\mathcal{P}_n)$	1	2						
$\deg_{rc}(\mathcal{P}_n)$	1	2	7	22	≤ 84	≤ 364	≤ 1734	≤ 8943
$1 + Q $	2	3	7	22	84	364	1734	8943
$1 + P $	2	3	7	23	95	455	2431	14 215
$ \mathcal{P}_n $	1	2	15	203	4140	115 975		

Reasonable conjecture

$\deg(\mathcal{P}_n) = 1 + |Q|$, where Q is the set of projections of rank ≤ 2 .

Tool 3: Partial actions on **projections**

Tool 3: Partial actions on projections

- ▶ Let S be a regular $*$ -semigroup:

$$\begin{array}{lll} \blacktriangleright a = aa^*a, & \blacktriangleright a^{**} = a, & \blacktriangleright (ab)^* = b^*a^*. \end{array}$$

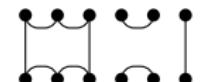
Tool 3: Partial actions on **projections**

- ▶ Let S be a regular $*$ -semigroup:
 - ▶ $a = aa^*a$,
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$.
- ▶ Let $P = P(S) = \{p \in S : p^2 = p = p^*\}$.

Tool 3: Partial actions on **projections**

- ▶ Let S be a regular $*$ -semigroup:
 - ▶ $a = aa^*a$,
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$.
- ▶ Let $P = P(S) = \{p \in S : p^2 = p = p^*\}$.
 - ▶ Elements of P are called **projections**.

Tool 3: Partial actions on **projections**

- ▶ Let S be a regular $*$ -semigroup:
 - ▶ $a = aa^*a$,
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$.
- ▶ Let $P = P(S) = \{p \in S : p^2 = p = p^*\}$.
 - ▶ Elements of P are called **projections**.
- ▶ Sample projection $p \in \mathcal{P}_n$ p 

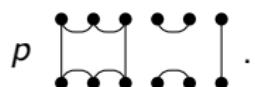
Tool 3: Partial actions on **projections**

- ▶ Let S be a regular $*$ -semigroup:
 - ▶ $a = aa^*a$,
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$.

- ▶ Let $P = P(S) = \{p \in S : p^2 = p = p^*\}$.

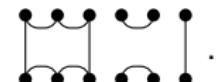
- ▶ Elements of P are called **projections**.

- ▶ Sample projection $p \in \mathcal{P}_n$



- ▶ Fact: $P = \{a^*a : a \in S\}$.

Tool 3: Partial actions on **projections**

- ▶ Let S be a regular $*$ -semigroup:
 - ▶ $a = aa^*a$,
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$.
- ▶ Let $P = P(S) = \{p \in S : p^2 = p = p^*\}$.
 - ▶ Elements of P are called **projections**.
- ▶ Sample projection $p \in \mathcal{P}_n$ 
- ▶ Fact: $P = \{a^*a : a \in S\}$.
- ▶ Follows: S acts on P by 'conjugation': $p^a = a^*pa$

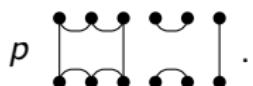
Tool 3: Partial actions on **projections**

- ▶ Let S be a regular $*$ -semigroup:
 - ▶ $a = aa^*a$,
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$.

- ▶ Let $P = P(S) = \{p \in S : p^2 = p = p^*\}$.

- ▶ Elements of P are called **projections**.

- ▶ Sample projection $p \in \mathcal{P}_n$



- ▶ Fact: $P = \{a^*a : a \in S\}$.

- ▶ Follows: S acts on P by 'conjugation': $p^a = a^*pa = (pa)^*pa$.

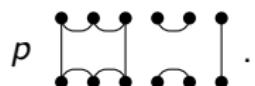
Tool 3: Partial actions on **projections**

- ▶ Let S be a regular $*$ -semigroup:
 - ▶ $a = aa^*a$,
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$.

- ▶ Let $P = P(S) = \{p \in S : p^2 = p = p^*\}$.

- ▶ Elements of P are called **projections**.

- ▶ Sample projection $p \in \mathcal{P}_n$



- ▶ Fact: $P = \{a^*a : a \in S\}$.

- ▶ Follows: S acts on P by 'conjugation': $p^a = a^*pa = (pa)^*pa$.

- ▶ Slight problem: this is not faithful when $S = \mathcal{P}_n$.

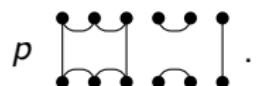
Tool 3: Partial actions on **projections**

- ▶ Let S be a regular $*$ -semigroup:
 - ▶ $a = aa^*a$,
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$.

- ▶ Let $P = P(S) = \{p \in S : p^2 = p = p^*\}$.

- ▶ Elements of P are called **projections**.

- ▶ Sample projection $p \in \mathcal{P}_n$



- ▶ Fact: $P = \{a^*a : a \in S\}$.

- ▶ Follows: S acts on P by 'conjugation': $p^a = a^*pa = (pa)^*pa$.

- ▶ Slight problem: this is not faithful when $S = \mathcal{P}_n$.

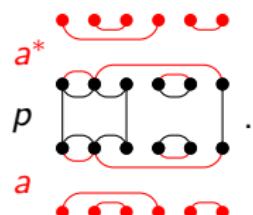
- ▶ e.g. $a =$ and $b =$ act the same.

Tool 3: Partial actions on **projections**

- ▶ Let S be a regular $*$ -semigroup:
 - ▶ $a = aa^*a$,
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$.

- ▶ Let $P = P(S) = \{p \in S : p^2 = p = p^*\}$.

- ▶ Elements of P are called **projections**.
- ▶ Sample projection $p \in \mathcal{P}_n$



- ▶ Fact: $P = \{a^*a : a \in S\}$.
- ▶ Follows: S acts on P by 'conjugation': $p^a = a^*pa = (pa)^*pa$.
- ▶ Slight problem: this is not faithful when $S = \mathcal{P}_n$.

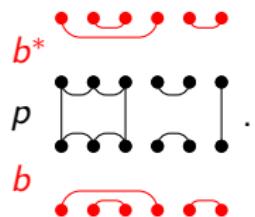
- ▶ e.g. $a =$ and $b =$ act the same.

Tool 3: Partial actions on **projections**

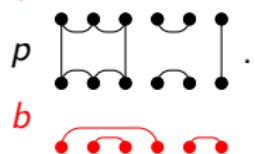
- ▶ Let S be a regular $*$ -semigroup:
 - ▶ $a = aa^*a$,
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$.

- ▶ Let $P = P(S) = \{p \in S : p^2 = p = p^*\}$.

- ▶ Elements of P are called **projections**.



- ▶ Sample projection $p \in \mathcal{P}_n$



- ▶ Fact: $P = \{a^*a : a \in S\}$.

- ▶ Follows: S acts on P by 'conjugation': $p^a = a^*pa = (pa)^*pa$.

- ▶ Slight problem: this is not faithful when $S = \mathcal{P}_n$.

- ▶ e.g. $a =$
 - and $b =$

act the same.

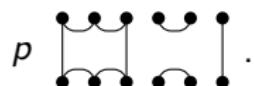
Tool 3: Partial actions on **projections**

- ▶ Let S be a regular $*$ -semigroup:
 - ▶ $a = aa^*a$,
 - ▶ $a^{**} = a$,
 - ▶ $(ab)^* = b^*a^*$.

- ▶ Let $P = P(S) = \{p \in S : p^2 = p = p^*\}$.

- ▶ Elements of P are called **projections**.

- ▶ Sample projection $p \in \mathcal{P}_n$



- ▶ Fact: $P = \{a^*a : a \in S\}$.

- ▶ Follows: S acts on P by 'conjugation': $p^a = a^*pa = (pa)^*pa$.

- ▶ Slight problem: this is not faithful when $S = \mathcal{P}_n$.

- ▶ e.g. $a =$
 - and $b =$
- act the same.

- ▶ Solution: **partialise** the action.

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\text{ker}(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.
- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowleft \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.
- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowright & \curvearrowright & \curvearrowright \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ For $p \in P$ and $a \in \mathcal{P}_n$ define
 - ▶ $p^a = \begin{cases} a^* p a & \text{if } \ker(pa) = \ker(p) \\ - & \text{otherwise.} \end{cases}$

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.
- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowright & \curvearrowright & \curvearrowright \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ For $p \in P$ and $a \in \mathcal{P}_n$ define
 - ▶ $p^a = \begin{cases} a^*pa & \text{if } \ker(pa) = \ker(p) \\ - & \text{otherwise.} \end{cases}$
- ▶ This is a partial action on P

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.
- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowleft \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ For $p \in P$ and $a \in \mathcal{P}_n$ define
 - ▶ $p^a = \begin{cases} a^*pa & \text{if } \ker(pa) = \ker(p) \\ - & \text{otherwise.} \end{cases}$
- ▶ This is a partial action on P , i.e. an action on $P \cup \{-\}$.

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.
- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowright & \curvearrowright & \curvearrowright \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ For $p \in P$ and $a \in \mathcal{P}_n$ define
 - ▶ $p^a = \begin{cases} a^*pa & \text{if } \ker(pa) = \ker(p) \\ - & \text{otherwise.} \end{cases}$
- ▶ This is a partial action on P , i.e. an action on $P \cup \{-\}$.
- ▶ It is also faithful!

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.
- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet \\ \curvearrowleft & \curvearrowleft & \curvearrowleft \\ \bullet & \bullet & \bullet \\ \curvearrowright & \curvearrowright & \curvearrowright \\ \bullet & \bullet & \bullet \end{array}$.
- ▶ For $p \in P$ and $a \in \mathcal{P}_n$ define
 - ▶ $p^a = \begin{cases} a^*pa & \text{if } \ker(pa) = \ker(p) \\ - & \text{otherwise.} \end{cases}$
- ▶ This is a partial action on P , i.e. an action on $P \cup \{-\}$.
- ▶ It is also faithful!
- ▶ E.g. again consider $a = \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowleft \\ \bullet & \bullet & \bullet & \bullet \\ \curvearrowright & \curvearrowright & \curvearrowright & \curvearrowright \\ \bullet & \bullet & \bullet & \bullet \end{array}$ and $b = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowleft \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowright & \curvearrowright & \curvearrowright & \curvearrowright & \curvearrowright \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.
- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \swarrow & \searrow & \swarrow & \searrow & \swarrow & \searrow \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ For $p \in P$ and $a \in \mathcal{P}_n$ define
 - ▶ $p^a = \begin{cases} a^*pa & \text{if } \ker(pa) = \ker(p) \\ - & \text{otherwise.} \end{cases}$
- ▶ This is a partial action on P , i.e. an action on $P \cup \{-\}$.
- ▶ It is also faithful!
- ▶ E.g. again consider $a = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \swarrow & \searrow & \swarrow & \searrow & \swarrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$ and $b = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \searrow & \swarrow & \searrow & \swarrow & \searrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
 - ▶ Then $\ker(pa) = (1, 2, 3, 6 \mid 4, 5)$

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.
- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \swarrow & \searrow & \swarrow & \searrow & \swarrow & \searrow \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ For $p \in P$ and $a \in \mathcal{P}_n$ define
 - ▶ $p^a = \begin{cases} a^*pa & \text{if } \ker(pa) = \ker(p) \\ - & \text{otherwise.} \end{cases}$
- ▶ This is a partial action on P , i.e. an action on $P \cup \{-\}$.
- ▶ It is also faithful!
- ▶ E.g. again consider $a = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \swarrow & \searrow & \swarrow & \searrow & \swarrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$ and $b = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \searrow & \swarrow & \searrow & \swarrow & \searrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
 - ▶ Then $\ker(pa) = (1, 2, 3, 6 \mid 4, 5) \neq \ker(p)$

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.
- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \swarrow & \searrow & \swarrow & \searrow & \swarrow & \searrow \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ For $p \in P$ and $a \in \mathcal{P}_n$ define
 - ▶ $p^a = \begin{cases} a^*pa & \text{if } \ker(pa) = \ker(p) \\ - & \text{otherwise.} \end{cases}$
- ▶ This is a partial action on P , i.e. an action on $P \cup \{-\}$.
- ▶ It is also faithful!
- ▶ E.g. again consider $a = \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \swarrow & \searrow & \swarrow & \searrow \\ \bullet & \bullet & \bullet & \bullet \end{array}$ and $b = \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \searrow & \swarrow & \searrow & \swarrow \\ \bullet & \bullet & \bullet & \bullet \end{array}$.
 - ▶ Then $\ker(pa) = (1, 2, 3, 6 \mid 4, 5) \neq \ker(p)$
 - ▶ So $p^a = -$

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.

- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \text{---} & \text{---} & \text{---} & \text{---} & \text{---} & \text{---} \\ \text{---} & \text{---} & \text{---} & \text{---} & \text{---} & \text{---} \\ \text{---} & \text{---} & \text{---} & \text{---} & \text{---} & \text{---} \\ \text{---} & \text{---} & \text{---} & \text{---} & \text{---} & \text{---} \\ \text{---} & \text{---} & \text{---} & \text{---} & \text{---} & \text{---} \end{array}$.

- ▶ For $p \in P$ and $a \in \mathcal{P}_n$ define

$$\begin{array}{l} \blacktriangleright p^a = \begin{cases} a^*pa & \text{if } \ker(pa) = \ker(p) \\ - & \text{otherwise.} \end{cases} \end{array}$$

- ▶ This is a partial action on P , i.e. an action on $P \cup \{-\}$.

- ▶ It is also faithful!

- ▶ E.g. again consider $a = \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \text{---} & \text{---} & \text{---} & \text{---} \end{array}$ and $b = \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \text{---} & \text{---} & \text{---} & \text{---} \end{array}$.

- ▶ Then $\ker(pa) = (1, 2, 3, 6 \mid 4, 5) \neq \ker(p)$ but $\ker(pb) = \ker(p)$.

- ▶ So $p^a = -$

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.

- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \text{---} & \text{---} & \text{---} & \text{---} & \text{---} & \text{---} \\ \text{---} & \text{---} & \text{---} & \text{---} & \text{---} & \text{---} \\ \text{---} & \text{---} & \text{---} & \text{---} & \text{---} & \text{---} \\ \text{---} & \text{---} & \text{---} & \text{---} & \text{---} & \text{---} \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.

- ▶ For $p \in P$ and $a \in \mathcal{P}_n$ define

$$\begin{array}{l} \blacktriangleright p^a = \begin{cases} a^*pa & \text{if } \ker(pa) = \ker(p) \\ - & \text{otherwise.} \end{cases} \end{array}$$

- ▶ This is a partial action on P , i.e. an action on $P \cup \{-\}$.

- ▶ It is also faithful!

- ▶ E.g. again consider $a = \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \text{---} & \text{---} & \text{---} & \text{---} \\ \bullet & \bullet & \bullet & \bullet \end{array}$ and $b = \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \text{---} & \text{---} & \text{---} & \text{---} \\ \bullet & \bullet & \bullet & \bullet \end{array}$.

- ▶ Then $\ker(pa) = (1, 2, 3, 6 \mid 4, 5) \neq \ker(p)$ but $\ker(pb) = \ker(p)$.

- ▶ So $p^a = -$ but $p^b = b^*pb$.

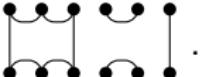
Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$, define $\ker(a) = \{(i, j) \in \mathbf{n} \times \mathbf{n} : [i]_a = [j]_a\}$.
- ▶ E.g. $\ker(p) = (1, 2, 3 \mid 4, 5 \mid 6)$ for $p = \begin{array}{c} \bullet & \bullet & \bullet \\ \curvearrowleft & \curvearrowleft & \curvearrowleft \\ \bullet & \bullet & \bullet \end{array} \quad \begin{array}{c} \bullet \\ \curvearrowleft \\ \bullet \end{array} \quad \begin{array}{c} \bullet \\ \curvearrowleft \\ \bullet \end{array} \quad \begin{array}{c} \bullet \\ \curvearrowright \\ \bullet \end{array}$.
- ▶ For $p \in P$ and $a \in \mathcal{P}_n$ define
 - ▶ $p^a = \begin{cases} a^*pa & \text{if } \ker(pa) = \ker(p) \\ - & \text{otherwise.} \end{cases}$
- ▶ This is a partial action on P , i.e. an action on $P \cup \{-\}$.
- ▶ It is also faithful!
- ▶ E.g. again consider $a = \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowright \\ \bullet & \bullet & \bullet & \bullet \end{array}$ and $b = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowright & \curvearrowleft & \curvearrowleft & \curvearrowleft & \curvearrowright \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
 - ▶ Then $\ker(pa) = (1, 2, 3, 6 \mid 4, 5) \neq \ker(p)$ but $\ker(pb) = \ker(p)$.
 - ▶ So $p^a = -$ but $p^b = b^*pb$.
 - ▶ So a and b act differently (on p).

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$ let $\text{rank}(a) = \text{number of 'transversals' of } a$.

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$ let $\text{rank}(a) = \text{number of 'transversals' of } a$.
- ▶ E.g. $\text{rank}(p) = 2$ for $p =$ 

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$ let $\text{rank}(a) = \text{number of 'transversals' of } a$.
- ▶ E.g. $\text{rank}(p) = 2$ for $p = \begin{array}{c} \bullet & \bullet & \bullet \\ \swarrow \quad \searrow & \swarrow \quad \searrow & \downarrow \\ \bullet & \bullet & \bullet \end{array}$.
- ▶ We have $\text{rank}(a^*pa) \leq \text{rank}(p)$.

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$ let $\text{rank}(a) = \text{number of 'transversals' of } a$.
- ▶ E.g. $\text{rank}(p) = 2$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \swarrow & \uparrow & \searrow & \downarrow \\ \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ We have $\text{rank}(a^*pa) \leq \text{rank}(p)$.
- ▶ $Q = \{p \in P : \text{rank}(p) \leq 2\}$ is closed under the partial action.

Tool 3: Partial actions on projections

- ▶ For $a \in \mathcal{P}_n$ let $\text{rank}(a) = \text{number of 'transversals' of } a$.
- ▶ E.g. $\text{rank}(p) = 2$ for $p = \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \swarrow & \searrow & \swarrow & \searrow \\ \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ We have $\text{rank}(a^*pa) \leq \text{rank}(p)$.
- ▶ $\textcolor{red}{Q} = \{p \in P : \text{rank}(p) \leq 2\}$ is closed under the partial action.
- ▶ This action is monogenic, generated by $t = \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \bullet & \bullet & \bullet & \bullet \end{array}$.

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$ let $\text{rank}(a) = \text{number of 'transversals' of } a$.
- ▶ E.g. $\text{rank}(p) = 2$ for $p = \begin{array}{c} \bullet & \bullet & \bullet \\ \swarrow \quad \searrow & \swarrow \quad \searrow & \swarrow \quad \searrow \\ \bullet & \bullet & \bullet \end{array}$.
- ▶ We have $\text{rank}(a^*pa) \leq \text{rank}(p)$.
- ▶ $Q = \{p \in P : \text{rank}(p) \leq 2\}$ is closed under the partial action.
- ▶ This action is monogenic, generated by $t = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ E.g. $p = t^{\hat{p}}$ where $\hat{p} = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \swarrow \quad \searrow & \swarrow \quad \searrow & \swarrow \quad \searrow & \swarrow \quad \searrow & \swarrow \quad \searrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$ let $\text{rank}(a) = \text{number of 'transversals' of } a$.
- ▶ E.g. $\text{rank}(p) = 2$ for $p = \begin{array}{c} \bullet & \bullet & \bullet \\ \swarrow \quad \searrow & \swarrow \quad \searrow & \swarrow \quad \searrow \\ \bullet & \bullet & \bullet \end{array}$.
- ▶ We have $\text{rank}(a^*pa) \leq \text{rank}(p)$.
- ▶ $Q = \{p \in P : \text{rank}(p) \leq 2\}$ is closed under the partial action.
- ▶ This action is monogenic, generated by $t = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ E.g. $p = t^{\hat{p}}$ where $\hat{p} = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \searrow & \searrow & \searrow & \searrow & \searrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ The action therefore corresponds to a right congruence

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$ let $\text{rank}(a) = \text{number of 'transversals' of } a$.
- ▶ E.g. $\text{rank}(p) = 2$ for $p = \begin{array}{c} \bullet & \bullet & \bullet \\ \swarrow \quad \searrow & \swarrow \quad \searrow & \swarrow \quad \searrow \\ \bullet & \bullet & \bullet \end{array}$.
- ▶ We have $\text{rank}(a^*pa) \leq \text{rank}(p)$.
- ▶ $Q = \{p \in P : \text{rank}(p) \leq 2\}$ is closed under the partial action.
- ▶ This action is monogenic, generated by $t = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ E.g. $p = t^{\hat{p}}$ where $\hat{p} = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \searrow & \searrow & \searrow & \searrow & \searrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ The action therefore corresponds to a right congruence:
 - ▶ $\sigma = \{(a, b) \in \mathcal{P}_n \times \mathcal{P}_n : t^a = t^b\}$.

Tool 3: Partial actions on **projections**

- ▶ For $a \in \mathcal{P}_n$ let $\text{rank}(a) = \text{number of 'transversals' of } a$.
- ▶ E.g. $\text{rank}(p) = 2$ for $p = \begin{array}{c} \bullet & \bullet & \bullet \\ \swarrow \quad \searrow & \swarrow \quad \searrow & \swarrow \quad \searrow \\ \bullet & \bullet & \bullet \end{array}$.
- ▶ We have $\text{rank}(a^*pa) \leq \text{rank}(p)$.
- ▶ $Q = \{p \in P : \text{rank}(p) \leq 2\}$ is closed under the partial action.
- ▶ This action is monogenic, generated by $t = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ E.g. $p = t^{\hat{p}}$ where $\hat{p} = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \searrow & \searrow & \searrow & \searrow & \searrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ The action therefore corresponds to a right congruence:
 - ▶ $\sigma = \{(a, b) \in \mathcal{P}_n \times \mathcal{P}_n : t^a = t^b\}$.
- ▶ This contains no non-trivial two-sided congruence.

Tool 3: Partial actions on projections

- ▶ For $a \in \mathcal{P}_n$ let $\text{rank}(a) = \text{number of 'transversals' of } a$.
- ▶ E.g. $\text{rank}(p) = 2$ for $p = \begin{array}{c} \bullet & \bullet & \bullet \\ \swarrow \quad \searrow & \swarrow \quad \searrow & \swarrow \quad \searrow \\ \bullet & \bullet & \bullet \end{array}$.
- ▶ We have $\text{rank}(a^*pa) \leq \text{rank}(p)$.
- ▶ $Q = \{p \in P : \text{rank}(p) \leq 2\}$ is closed under the partial action.
- ▶ This action is monogenic, generated by $t = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ E.g. $p = t^{\hat{p}}$ where $\hat{p} = \begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \searrow & \searrow & \searrow & \searrow & \searrow \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$.
- ▶ The action therefore corresponds to a right congruence:
 - ▶ $\sigma = \{(a, b) \in \mathcal{P}_n \times \mathcal{P}_n : t^a = t^b\}$.
- ▶ This contains no non-trivial two-sided congruence.
- ▶ So we have the upper bound $\text{deg}(\mathcal{P}_n) \leq \text{deg}_{\text{rc}}(\mathcal{P}_n) \leq 1 + |Q|$.

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.
- ▶ There are three minimal two-sided congruences of \mathcal{P}_n

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.
- ▶ There are three minimal two-sided congruences of \mathcal{P}_n :
 - ▶ $\lambda = (z, a)^\sharp$,
 - ▶ $\rho = (z, b)^\sharp$,
 - ▶ $\mu = (z, c)^\sharp$

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.
- ▶ There are three minimal two-sided congruences of \mathcal{P}_n :
 - ▶ $\lambda = (z, a)^\sharp$,
 - ▶ $\rho = (z, b)^\sharp$,
 - ▶ $\mu = (z, c)^\sharp$,

where $z = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $a = \begin{smallmatrix} \curvearrowleft & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $b = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet \\ \curvearrowright & \bullet & \bullet & \bullet \end{smallmatrix}$, $c = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet \\ \bullet & \curvearrowleft & \bullet & \bullet \end{smallmatrix}$.

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.

- ▶ There are three minimal two-sided congruences of \mathcal{P}_n :

$$\blacktriangleright \lambda = (z, a)^\sharp, \quad \blacktriangleright \rho = (z, b)^\sharp, \quad \blacktriangleright \mu = (z, c)^\sharp,$$

where $z = \begin{smallmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{smallmatrix}$, $a = \begin{smallmatrix} \curvearrowleft & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{smallmatrix}$, $b = \begin{smallmatrix} \bullet & \bullet & \bullet \\ \curvearrowright & \bullet & \bullet \end{smallmatrix}$, $c = \begin{smallmatrix} \bullet & \bullet & \bullet \\ \bullet & \curvearrowleft & \bullet \end{smallmatrix}$.

- ▶ The action must ‘separate’ each of the above pairs.

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.
- ▶ There are three minimal two-sided congruences of \mathcal{P}_n :
 - ▶ $\lambda = (z, a)^\sharp$,
 - ▶ $\rho = (z, b)^\sharp$,
 - ▶ $\mu = (z, c)^\sharp$,
- where $z = \begin{smallmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{smallmatrix}$, $a = \begin{smallmatrix} \curvearrowleft & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{smallmatrix}$, $b = \begin{smallmatrix} \bullet & \bullet & \bullet \\ \curvearrowright & \bullet & \bullet \end{smallmatrix}$, $c = \begin{smallmatrix} \bullet & \bullet & \bullet \\ \bullet & \curvearrowleft & \bullet \end{smallmatrix}$.
- ▶ The action must ‘separate’ each of the above pairs.
 - ▶ So $x_2^z \neq x_2^a$, $x_0^z \neq x_0^b$, $x_1^z \neq x_1^c$ for some $x_0, x_1, x_2 \in X$.

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.

- ▶ There are three minimal two-sided congruences of \mathcal{P}_n :

$$\begin{array}{ccc} \blacktriangleright \lambda = (z, a)^\sharp, & \blacktriangleright \rho = (z, b)^\sharp, & \blacktriangleright \mu = (z, c)^\sharp, \end{array}$$

where $z = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $a = \begin{smallmatrix} \curvearrowleft & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{smallmatrix}$, $b = \begin{smallmatrix} \bullet & \bullet & \bullet \\ \curvearrowright & \bullet & \bullet \end{smallmatrix}$, $c = \begin{smallmatrix} \bullet & \bullet & \bullet \\ \bullet & \curvearrowleft & \bullet \end{smallmatrix}$.

- ▶ The action must 'separate' each of the above pairs.
 - ▶ So $x_2^z \neq x_2^a$, $x_0^z \neq x_0^b$, $x_1^z \neq x_1^c$ for some $x_0, x_1, x_2 \in X$.
- ▶ Let $Y_i = x_i^{\widehat{P}_i}$

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.

- ▶ There are three minimal two-sided congruences of \mathcal{P}_n :

$$\blacktriangleright \lambda = (z, a)^\sharp, \quad \blacktriangleright \rho = (z, b)^\sharp, \quad \blacktriangleright \mu = (z, c)^\sharp,$$

where $z = \begin{smallmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{smallmatrix}$, $a = \begin{smallmatrix} \curvearrowleft & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{smallmatrix}$, $b = \begin{smallmatrix} \bullet & \bullet & \bullet \\ \curvearrowright & \bullet & \bullet \end{smallmatrix}$, $c = \begin{smallmatrix} \bullet & \bullet & \bullet \\ \bullet & \curvearrowleft & \bullet \end{smallmatrix}$.

- ▶ The action must 'separate' each of the above pairs.
 - ▶ So $x_2^z \neq x_2^a$, $x_0^z \neq x_0^b$, $x_1^z \neq x_1^c$ for some $x_0, x_1, x_2 \in X$.
- ▶ Let $Y_i = x_i^{\widehat{P}_i} = \{x_i^p : p \in P_i\}$.

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.
- ▶ There are three minimal two-sided congruences of \mathcal{P}_n :
 - ▶ $\lambda = (z, a)^\sharp$,
 - ▶ $\rho = (z, b)^\sharp$,
 - ▶ $\mu = (z, c)^\sharp$,

where $z = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $a = \begin{smallmatrix} \curvearrowleft & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $b = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowleft & \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $c = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \curvearrowleft & \bullet & \bullet & \bullet \end{smallmatrix}$.
- ▶ The action must ‘separate’ each of the above pairs.
 - ▶ So $x_2^z \neq x_2^a$, $x_0^z \neq x_0^b$, $x_1^z \neq x_1^c$ for some $x_0, x_1, x_2 \in X$.
- ▶ Let $Y_i = x_i^{\widehat{P}_i} = \{x_i^p : p \in P_i\}$. Here $P_i = \{p \in P : \text{rank}(p) = i\}$.

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.
- ▶ There are three minimal two-sided congruences of \mathcal{P}_n :
 - ▶ $\lambda = (z, a)^\sharp$,
 - ▶ $\rho = (z, b)^\sharp$,
 - ▶ $\mu = (z, c)^\sharp$,

where $z = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $a = \begin{smallmatrix} \curvearrowleft & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $b = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowleft & \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $c = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \curvearrowleft & \bullet & \bullet & \bullet \end{smallmatrix}$.
- ▶ The action must ‘separate’ each of the above pairs.
 - ▶ So $x_2^z \neq x_2^a$, $x_0^z \neq x_0^b$, $x_1^z \neq x_1^c$ for some $x_0, x_1, x_2 \in X$.
- ▶ Let $Y_i = x_i^{\widehat{P}_i} = \{x_i^p : p \in P_i\}$. Here $P_i = \{p \in P : \text{rank}(p) = i\}$.
 - ▶ Then $|Y_i| = |P_i|$ for all i .

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.
- ▶ There are three minimal two-sided congruences of \mathcal{P}_n :
 - ▶ $\lambda = (z, a)^\sharp$,
 - ▶ $\rho = (z, b)^\sharp$,
 - ▶ $\mu = (z, c)^\sharp$,where $z = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{smallmatrix}$, $a = \begin{smallmatrix} \circ & \bullet & \bullet & \bullet \\ \cdot & \cdot & \cdot & \cdot \end{smallmatrix}$, $b = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet \\ \circ & \cdot & \cdot & \cdot \end{smallmatrix}$, $c = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet \\ \cdot & \cdot & \cdot & \cdot \end{smallmatrix}$.
- ▶ The action must 'separate' each of the above pairs.
 - ▶ So $x_2^z \neq x_2^a$, $x_0^z \neq x_0^b$, $x_1^z \neq x_1^c$ for some $x_0, x_1, x_2 \in X$.
- ▶ Let $Y_i = x_i^{\widehat{P}_i} = \{x_i^p : p \in P_i\}$. Here $P_i = \{p \in P : \text{rank}(p) = i\}$.
 - ▶ Then $|Y_i| = |P_i|$ for all $i \dots$ and $Y_0 \sqcup Y_1 \sqcup Y_2 \subsetneq X$.

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.
- ▶ There are three minimal two-sided congruences of \mathcal{P}_n :
 - ▶ $\lambda = (z, a)^\sharp$,
 - ▶ $\rho = (z, b)^\sharp$,
 - ▶ $\mu = (z, c)^\sharp$,

where $z = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $a = \begin{smallmatrix} \curvearrowleft & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $b = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowright & \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $c = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$.
- ▶ The action must 'separate' each of the above pairs.
 - ▶ So $x_2^z \neq x_2^a$, $x_0^z \neq x_0^b$, $x_1^z \neq x_1^c$ for some $x_0, x_1, x_2 \in X$.
- ▶ Let $Y_i = x_i^{\widehat{P}_i} = \{x_i^p : p \in P_i\}$. Here $P_i = \{p \in P : \text{rank}(p) = i\}$.
 - ▶ Then $|Y_i| = |P_i|$ for all $i \dots$ and $Y_0 \sqcup Y_1 \sqcup Y_2 \subsetneq X$.
- ▶ So $|X| \geq |P_0| + |P_1| + |P_2| + 1$

Lower bound: $\deg(\mathcal{P}_n) \geq 1 + |Q|$

- ▶ Suppose we have an arbitrary faithful action of \mathcal{P}_n on X .
 - ▶ We must show that $|X| \geq 1 + |Q|$.
- ▶ There are three minimal two-sided congruences of \mathcal{P}_n :
 - ▶ $\lambda = (z, a)^\sharp$,
 - ▶ $\rho = (z, b)^\sharp$,
 - ▶ $\mu = (z, c)^\sharp$,where $z = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $a = \begin{smallmatrix} \curvearrowleft & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $b = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \curvearrowright & \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$, $c = \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{smallmatrix}$.
- ▶ The action must 'separate' each of the above pairs.
 - ▶ So $x_2^z \neq x_2^a$, $x_0^z \neq x_0^b$, $x_1^z \neq x_1^c$ for some $x_0, x_1, x_2 \in X$.
- ▶ Let $Y_i = x_i^{\widehat{P}_i} = \{x_i^{\widehat{p}} : p \in P_i\}$. Here $P_i = \{p \in P : \text{rank}(p) = i\}$.
 - ▶ Then $|Y_i| = |P_i|$ for all $i \dots$ and $Y_0 \sqcup Y_1 \sqcup Y_2 \subsetneq X$.
- ▶ So $|X| \geq |P_0| + |P_1| + |P_2| + 1 = 1 + |Q|$.

Degree of \mathcal{P}_n

Theorem

For $n \geq 2$ we have

- ▶ $\deg(\mathcal{P}_n) = \deg_{rc}(\mathcal{P}_n) = 1 + |Q|$

Degree of \mathcal{P}_n

Theorem

For $n \geq 2$ we have

- ▶ $\deg(\mathcal{P}_n) = \deg_{rc}(\mathcal{P}_n) = 1 + |Q|$
$$= 1 + \frac{B(n+2) - B(n+1) + B(n)}{2}.$$

Degree of \mathcal{P}_n

Theorem

For $n \geq 2$ we have

$$\begin{aligned}\blacktriangleright \deg(\mathcal{P}_n) &= \deg_{\text{rc}}(\mathcal{P}_n) = 1 + |Q| \\ &= 1 + \frac{B(n+2) - B(n+1) + B(n)}{2}.\end{aligned}$$

\blacktriangleright The proof works simultaneously for \mathcal{P}_n , \mathcal{PP}_n , \mathcal{PB}_n and \mathcal{M}_n .

Degree of \mathcal{P}_n

Theorem

For $n \geq 2$ we have

$$\begin{aligned}\blacktriangleright \deg(\mathcal{P}_n) &= \deg_{\text{rc}}(\mathcal{P}_n) = 1 + |Q| \\ &= 1 + \frac{B(n+2) - B(n+1) + B(n)}{2}.\end{aligned}$$

- ▶ The proof works simultaneously for \mathcal{P}_n , \mathcal{PP}_n , \mathcal{PB}_n and \mathcal{M}_n .
 - ▶ The size of Q involves different combinatorial parameters.

Degree of \mathcal{P}_n

Theorem

For $n \geq 2$ we have

$$\begin{aligned} \blacktriangleright \deg(\mathcal{P}_n) &= \deg_{\text{rc}}(\mathcal{P}_n) = 1 + |Q| \\ &= 1 + \frac{B(n+2) - B(n+1) + B(n)}{2}. \end{aligned}$$

- ▶ The proof works simultaneously for \mathcal{P}_n , \mathcal{PP}_n , \mathcal{PB}_n and \mathcal{M}_n .
 - ▶ The size of Q involves different combinatorial parameters.
- ▶ The proof can be adapted for \mathcal{TL}_n .

Degree of \mathcal{P}_n

Theorem

For $n \geq 2$ we have

$$\begin{aligned} \blacktriangleright \deg(\mathcal{P}_n) &= \deg_{\text{rc}}(\mathcal{P}_n) = 1 + |Q| \\ &= 1 + \frac{B(n+2) - B(n+1) + B(n)}{2}. \end{aligned}$$

- ▶ The proof works simultaneously for \mathcal{P}_n , \mathcal{PP}_n , \mathcal{PB}_n and \mathcal{M}_n .
 - ▶ The size of Q involves different combinatorial parameters.
- ▶ The proof can be adapted for \mathcal{TL}_n .
- ▶ Things are very different for \mathcal{B}_n .

Degree of \mathcal{P}_n

Theorem

For $n \geq 2$ we have

$$\begin{aligned} \blacktriangleright \deg(\mathcal{P}_n) &= \deg_{\text{rc}}(\mathcal{P}_n) = 1 + |Q| \\ &= 1 + \frac{B(n+2) - B(n+1) + B(n)}{2}. \end{aligned}$$

- ▶ The proof works simultaneously for \mathcal{P}_n , \mathcal{PP}_n , \mathcal{PB}_n and \mathcal{M}_n .
 - ▶ The size of Q involves different combinatorial parameters.
- ▶ The proof can be adapted for \mathcal{TL}_n .
- ▶ Things are very different for \mathcal{B}_n .
 - ▶ e.g. $\deg(\mathcal{B}_{2k}) < \deg_{\text{rc}}(\mathcal{B}_{2k})$.

Degree of diagram monoids

Monoid M	Validity	Minimum partial transformation degree $\deg'(M)$
\mathcal{P}_n	$n \geq 2$	$p_0 + p_1 + p_2$
\mathcal{PB}_n	$n \geq 2$	$p_0 + p_1 + p_2$
\mathcal{B}_n	$n \geq 3$ odd	$p_1 + 3p_3$
	$n \geq 4$ even	$p_0 + 2p_2 + 3p_4$
\mathcal{PP}_n	$n \geq 2$	$p_0 + p_1 + p_2$
\mathcal{M}_n	$n \geq 2$	$p_0 + p_1 + p_2$
\mathcal{TL}_n	$n \geq 3$ odd	$p_1 + p_3$
	$n \geq 4$ even	$p_0 + p_2 + p_4$

Degree of diagram monoids

Monoid M	Validity	Minimum partial transformation degree $\deg'(M)$
\mathcal{P}_n	$n \geq 2$	$\frac{B(n+2) - B(n+1) + B(n)}{2}$
\mathcal{PB}_n	$n \geq 2$	$\frac{I(n+2)}{2}$
\mathcal{B}_n	$n \geq 3$ odd	$\frac{n+1}{2} \cdot n!!$
	$n \geq 4$ even	$\frac{(n+4)(n+2)}{8} \cdot (n-1)!!$
\mathcal{PP}_n	$n \geq 2$	$C(n+2) - 2C(n+1) + C(n)$
\mathcal{M}_n	$n \geq 2$	$M(n+2) - M(n+1)$
\mathcal{TL}_n	$n = 2k - 1 \geq 3$	$C(k+1) - C(k)$
	$n = 2k \geq 4$	$C(k+2) - 2C(k+1) + C(k)$

Thanks for listening :-)

Reinis Cirpons

James East

James Mitchell

- ▶ Transformation representations of diagram monoids
 - ▶ arXiv:2411.14693