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Basic idea

» For a positive integer n, let n = {1,...,n}.
» 7, = {functions n — n} is a semigroup under composition.

» The full transformation semigroup of rank n.

» Cayley’'s Theorem: Any finite semigroup embeds in some 7.

Definition

The degree of a finite semigroup S is the minimum such n:

deg(S) = min{n : S embeds in 7,}.

Natural problem

Given S, find deg(5). Today: S is a ‘diagram monoid’.
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Transformation representations/degrees: Why?

> For fun!
» Interesting semigroup families lead to interesting combinatorics.

> A challenge... even when S is simple...

» Computation.

» GAP works very well with transformation semigroups.

» Philosophy of semigroup theory.
» Enumeration by size: almost all semigroups are boring :-(

> Enumeration by degree: almost all semigroups are interesting :-)

» Many authors have calculated deg(S) for various (semi)groups S.

» Babai, Cain, Cameron, Easdown, Elias, FitzGerald, Hendriksen,
Holt, Johnson, Kovacs, Malheiro, Margolis, Paulista, Pebody,
Praeger, Quinn-Gregson, Saunders, Schein, Steinberg, Wright...

...and us!



Some simple semigroups



Some simple semigroups

> deg(7s) =



Some simple semigroups

> deg(7n) = n.



Some simple semigroups

> deg(7,) = n.
> deg(Ss) =



Some simple semigroups

> deg(7,) = n.
> deg(Sp) = n.



Some simple semigroups

> deg(7,) = n.
> deg(Sp) = n.
> deg(PTn) =



Some simple semigroups

> deg(7,) = n.
> deg(Sp) = n.
» deg(PT,) =n+1.



Some simple semigroups

> deg(7n)
> deg(Sn)
» deg(PT,) =n+1.
> deg(Z,) =

=n.
n.



Some simple semigroups

> deg(7,) = n.

> deg(Sp) = n.

> deg(PTn) =n+1.
> deg(Z,) =n+1.



Some simple semigroups

> deg(7,) =

(
> deg(Sn) =
» deg(P7,) =n+1.
» deg(Z,) =n+1.
(

> deg(7,°) =



Some simple semigroups

> deg(7,) = n.
> deg(Sp) = n.
> deg(PTn) =n+1.
(
(

» deg(Z,) =n+1.
> deg(7:°) = 2" (!).



Some simple semigroups

> deg(7,) =

(
> deg(Sn) =
» deg(PT,) =n+1.
» deg(Z,) =n+1.
> deg(7,°) =2" ().

> Margolis and Steinberg (2023).



Some simple semigroups

> deg(7,) =

(
> deg(Sp) =
» deg(PT,) =n+1.
» deg(Z,) =n+1.
> deg(7,°) =2" ().

> Margolis and Steinberg (2023).

> Follows that deg(B,) > 2" (binary relations).



Some simple semigroups

> deg

(Ta) =
> deg(Sh) =
» deg(P7,) =n+1.
» deg(Z,) =n+1.
> deg(7,°) =2" ().

> Margolis and Steinberg (2023).

> Follows that deg(B,) > 2" (binary relations).

» And that deg(P,) > 2" (partition monoid).



Some simple semigroups

vV VvV VvV Vv .yYy
o
(0]
/—\Agiﬁ,\
~
S
I
S
_|._
—

> Margolis and Steinberg (2023).
> Follows that deg(B,) > 2" (binary relations).
» And that deg(P,) > 2" (partition monoid).

> M&S: deg(B,) =2" (1).



Some simple semigroups

> deg

(Ta) =
> deg(Sh) =
» deg(P7,) =n+1.
» deg(Z,) =n+1.
> deg(7,°) =2" ().

> Margolis and Steinberg (2023).

> Follows that deg(B,) > 2" (binary relations).

» And that deg(P,) > 2" (partition monoid).

> M&S: deg(B,) =2" (1).
> So maybe deg(P,) = 2"7



Some simple semigroups

> deg

(Ta) =
> deg(Sn) =
» deg(P7,) =n+1.
» deg(Z,) =n+1.
> deg(7,°) =2" ().

> Margolis and Steinberg (2023).

> Follows that deg(B,) > 2" (binary relations).

» And that deg(P,) > 2" (partition monoid).

> M&S: deg(B,) =2" (1).
> So maybe deg(P,) = 2"7

> Actually, deg(P,) = 14+ 21 +2) = B(n+1)+ B(n)

2



Some simple semigroups

> deg

(Ta) =
> deg(Sn) =
» deg(P7,) =n+1.
» deg(Z,) =n+1.
> deg(7,°) =2" ().

> Margolis and Steinberg (2023).

> Follows that deg(B,) > 2" (binary relations).

» And that deg(P,) > 2" (partition monoid).

> M&S: deg(B,) =2" (1).
> So maybe deg(P,) = 2"7

B(n+2)— B(n+1)+ B(n)

> Actually, deg(P,) =1+ 2

> 2",
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Some more simple semigroups

P> Left zero semigroup: a set L with product xy = x.

\4

Right zero semigroup: a set R with product xy = y.

v

Null semigroup: a set N with product xy = 0.

> Easdown (1992):
» deg(L,) = min{n: r"~" > p for some r € n}.
» deg(Ry) = min{n: [\ > g for some A n}.
» Cameron, E, FitzGerald, Mitchell, Pebody, Quinn-Gregson (2023):
> deg(Np) = deg(L))!
» deg(L, X Rq) = min{n : there is a uniform hypergraph with
n vertices, g edges and p colourings}

=min{n: [\ > g for some A\, n— [log, p]}.
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» The partition monoid of rank n is
P, = {set partitions of nUn’}

= {graphs on vertex set nUn'}.
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Partition monoids — product in P,

To calculate the product of a, b € P,:
(1) connect a to b,

(2) remove middle vertices and floating components,

(3) tidy up.

b{ﬁ#ﬁiﬁi%}ab
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Partition monoids — involution in P,

» P, has an involution:

» a2+ a* = ‘a turned upside down'.

» P, is a regular x-semigroup:
> ot — a,

> (ab)* = b*a*,

> a=aa*a(and a* = a*aa*).



Diagram monoids — submonoids of P,
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Short answer (add 1 for deg(M)):

Monoid M Validity Minimum partial transformation degree deg’(M)
P, n>2 B(n+2)7B(2n+1)+B(n)
PB, n>2 lnt2)
B, n > 3 odd "T“ -nl!
n > 4 even w-(n—l)!!

PP, n>2 Cn+2)—2C(n+1)+C(n)
M, n>2 Mn+2)—M(n+1)
T n=2k—-1>3 Ck+1)—-C(k)
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Diagram monoids — transformation degree

Today's question

What is deg(P,)? deg(B,)? deg(M,)? deg(TL,)? ......

Short answer (add 1 for deg(M)):

Monoid M Validity

Minimum partial transformation degree deg’(M)

P n>2 po+p1+p2
PB, n>2 Po +p1+ P2
n>3odd p;+3p;3
B,
n>4even pg+ 2p2+ 3ps
PPn n>2 po + p1+ p2
M, n>2 Po +p1+ p2
n > 3 odd +
T, e P1TPp3
n>4even po+p2+py
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Today's question

What is deg(P,)? deg(B,)? deg(Mp,)? deg(TLy)? ......

Short answer (add 1 for deg(M)):

n 0 2 3 4 5 6 7 3 9 10 OEIS
deg'(P) | 6 21 83 363 1733 8942 49484 291871 1825501 A087649
deg/(PB,) 1 5 13 38 116 382 1310 4748 17848 70076 A001475

1 2 1 1 157 19 845 1xA001194

de!(B,) 8 50 575 9845 1xA00119
6 45 420 4725 A001879
deg'(2P,) | 6 19 62 207 704 2431 8502 30056 107 236 A026012
deg/(M,,) 1 5 12 30 76 196 512 1353 3610 9713 A002026
1 1 6 19 62 207 A026012

deg'(TL

g (TLw) 3 9 28 90 A000245
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» Today we'll just consider partition monoids, Pp,.

Theorem

For n > 2 we have

B(n+2)— B(n+1)+ B(n)
5 :

Here B(k) is the kth Bell number.

> deg(Pn) =1+

» To prove such a result one needs to:
» find a faithful trans. rep. of the stated degree, and

P show that any faithful trans. rep. has at least that degree.

> Key tools:

> actions, (one- and two-sided) congruences, projections.
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Tool 1: Transformation reps and actions (folklore)
> Let S be a semigroup.

> A trans. rep. is a homomorphism ¢ : S — Tx for some set X.
> So (a¢)(bp) = (ab)¢ for all a,b € S.
» Forae S write ap = f, € Tx.
» So ff, = fp forall a,b € S.

> ie (xfy)fy = xfap forall a,b € S and x € X.

» A (right) action is a map X x § — X : (x,a) — x? such that

> (x?)P =xforall a,b€ S and x € X.

» So transformation representations = actions.
» Thus, deg(S) = min{n : S has a faithful action of degree n}.

> Faithful: different elements of S act differently.
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Tool 2: Actions and right congruences (folklore)
> Let S be a semigroup.

> A right congruence is a right-compatible equivalence o on S.

> (x,y) €0 = (xa,ya) € o forall x,y,ae§.

> Write S/o = {[x] : x € S} for the set of all o-classes.
» Then S acts on S/o by [x]? = [xa].

» If S is a monoid, then this action is monogenic: [x] = [1]*.

» Conversely, any monogenic monoid action is a right cong. action.

» Key fact: The action of a monoid S on S/ is faithful

iff o contains no non-trivial two-sided congruence.
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deg(S) = min{n : S has a faithful action of degree n}.
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deg,.(S) = min{n : S has a faithful rc action of degree n}.

» Upper bound: deg(S) < deg,.(S) <|S/0]
> for any (specific) right congruence o containing no non-trivial
two-sided congruence.
» The two-sided congruences of P, are known.
» The right congruences are much more complicated.

» But they can be computed for small n.

» GAP gave us some small(ish)-degree faithful right congruences.
> We were baffled...... but eventually we understood one:

» |Pn/o| =1+ A, where X is the number of #-classes.
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» GAP computations:

n 0 1 2 3 4 5 6 7
2n 1 2 4 8 16 32 64 128
deg(Pn) 1 2

deg, (P,) 1 2 7 22 <84 <364 <1734 <8943
1+ A 2 3 7 23 95 455 2431 14 215
[P, 1 2 15 203 4140 115975

> deg(P,) < deg,(Pn) <1+
» This bound is not tight.

» But it's an improvement on deg(P,) < | Pl
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This made deg(P,) < 1+ |P| clearer......

...... and let us find a faithful sub-act Q C P.
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» GAP computations:

n 01 2 3 4 5 6 7
27 1 2 4 8 16 32 64 128
deg(P,) 1 2

deg, (P,) 1 2 7 22 <84 <364 <1734 <8943
1+1Qf 2 3 7 22 s 364 1734 8943
1+ |P| 2 3 7 23 95 455 2431 14 215
|Pn| 1 2 15 203 4140 1150975

Reasonable conjecture

deg(Pn) =1+ |Q|, where Q is the set of projections of rank < 2.
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Tool 3: Partial actions on projections

> Let S be a regular x-semigroup:
> a=aa*a, > = g, > (ab)* = b*a*.
> Let P=P(S)={peS:p*=p=p*}

» Elements of P are called projections.

<
» Sample projection p € Py coooiiiiiiiiiiiiiiine, p I:;'\:I “- I .

» Fact: P={a*a:ac S}

> Follows: S acts on P by ‘conjugation’: p? = a*pa = (pa)*pa.
» Slight problem: this is not faithful when S = P,,.
Q x o Q9 ’ ® 0 00 0 0
> = =
eg a= —— . and b = act the same.

» Solution: partialise the action.
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Tool 3: Partial actions on projections
> For a € Py, define ker(a) = {(i,j) e nxn: [, =[j].}.

<
> Eg ker(p) = (1,2.34,5[6) forp= | | |.
» For p € P and a € P, define
> p7 = {a*pa if ker(p.a) = ker(p)
- otherwise.

» This is a partial action on P, i.e. an action on P U {—}.
> |t is also faithful!

i . L L ® o0 0 0 0
> E.g. again consider a = P and b= e e

» Then ker(pa) = (1,2,3,6 | 4,5) # ker(p) but ker(pb) = ker(p).
> So p? = — but p® = b*pb.

» So a and b act differently (on p).
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Tool 3: Partial actions on projections

» For a € P, let rank(a) = number of ‘transversals’ of a.

<
» E.g. rank(p) =2 for p= I:';I I .

>
» We have rank(a*pa) < rank(p).

» Q= {pe€ P:rank(p) <2} is closed under the partial action.

P This action is monogenic, generated by t = I I

. o 0 00
> E.g. p= tP where p= I’Y\ﬂ :

» The action therefore corresponds to a right congruence:
> o={(a,b) € Py x Pp: t7 =tb}.
» This contains no non-trivial two-sided congruence.

» So we have the upper bound deg(P,) < deg,.(Pn) <1+ |Q|.
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» Suppose we have an arbitrary faithful action of P, on X.

> We must show that |X| > 1+ Q.

» There are three minimal two-sided congruences of P,:

> )\ =(z,a)", > p=(z,b), > 1= (z,c),
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» The action must ‘separate’ each of the above pairs.

> Soxi# x5, X AXE, XFF#XF for some xp, x1,x2 € X.

> Let Vi=x"" = {xP:pe P;}. Here P,={pc P:rank(p) = i}.
> Then |Y;| = |P;| forall i...... and YoU YUY, C X.

> So [X[ = [Po| + [P + [Po +1=1+Q].
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Degree of P,

For n > 2 we have

> deg(Py) = deg,(Pn) =1+Q)

. B(n—|—2)—B(2n+1)+B(n)_

» The proof works simultaneously for P,, 2P, PB, and M,,.

» The size of Q involves different combinatorial parameters.

» The proof can be adapted for TL,.
» Things are very different for B,.
> e.g. deg(Bak) < deg,.(Bak).



Degree of diagram monoids

Monoid M Validity Minimum partial transformation degree deg’(M)
Pn n>2 Po +p1+p2
PBr nz2 po+p1+p2

n>3odd p;+3ps
By,
n>4even pg+ 2p2+ 3ps

P Pn nz2 Po+p1+pe

M, n>2 po+p1+p2
n > 3 odd + s

T, = P1TP3
n >4 even py+ p2+ py




Degree of diagram monoids

Monoid M Validity Minimum partial transformation degree deg’(M)
P, n>2 B(n+2)—B(2n+1)+B(n)
PB, n>2 I(n2+2)
B, n > 3 odd % all
n >4 even M (n—1
PP, n>2 C(n+2)720(n 1)+ C(n)
Ma, n>2 M(n+2)—M(n+1)

n=2k—-1>3 C(k+1)—C(k)

TLo
n=2k>4 C(k+2) —2C(k + 1)+ C(k)




Thanks for listening :-)

Reinis Cirpons James East James Mitchell

» Transformation representations of diagram monoids

» arXiv:2411.14693



